中文官网:

Redis中文网

超强、超详细Redis入门教程_这篇文章主要介绍了超强、超详细redis入门教程,本文详细介绍了redis数据库各个方-CSDN博客

Redis 教程 | 菜鸟教程 (runoob.com)

学习路线方针:

第一次整体: 5W(菜鸟教程,redis官网,csdn)

第一次细化:

小林面试篇作为骨架,补充以菜鸟教程+csdn搜到的机制

学习顺序为:数据类型与数据结构,发布订阅机制,脚本,事务,链接

持久化,主从,删除策略,内存管理策略(过期删除,内存淘汰,)

应用:三加一问题的解决,数据备份和恢复的实践,性能测试,客户端链接,管道,分区,集群(++slot)

1.是什么

redis是一种基于内存的高性能,高并发key-value数据库,对数据的读写都在内存完成,常用于缓存,分布式锁等场景

PS:redis,mysql,linxu都是用c写的

相比其他 key - value 缓存产品有以下三个特点:

  • Redis支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。

  • Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存储。

  • Redis支持数据的备份,即master-slave模式的数据备份。

2.redis优势

1.高性能,高可用,高拓展

2.数据类型丰富

3.所有操作都是原子性的 (因为redis 网络IO和键值读写是单线程处理的)

4.丰富的特性,支持事务,数据持久化,Lua脚本,数据备份,发布订阅模式,过期删除,内存淘汰机制,多种集群方案

3.redis如何实现三高

三高的原因

  1. 高性能:

  2. 高可用:主从复制、哨兵集群;

  3. 高拓展:Cluster 分片集群

1.redis为什么高性能

1.基于内存操作

Redis 是基于内存的数据库,不论读写操作都是在内存上完成的

2.高效数据结构

image-20231005114008572

3.单线程模型

避免了线程创建,多线程上下文切换的性能消耗

避免了线程间竞争问题,不需要锁机制

4.IO多路复用模型和性能优良的事件驱动

Redis 采用 I/O 多路复用技术,并发处理连接。采用了 epoll + 自己实现的简单的事件框架。epoll 中的读、写、关闭、连接都转化成了事件,然后利用 epoll 的多路复用特性,绝不在 IO 上浪费一点时间。

Redis服务端,从整体上来看,其实是一个事件驱动的程序,所有的操作都以事件的方式来进行。

单线程是否没有充分利用 CPU 资源呢?

:因为 Redis 是基于内存的操作,使用Redis时,几乎不存在CPU成为瓶颈的情况, Redis主要受限于服务器内存和网络。(cpu读写内存很快,而且redis几乎所有操作都是简单的get,set,不存在复杂的计算操作,所以redis主要受限于内存和网络,而不是cpu) 然而,使用了单线程的处理方式,就意味着到达服务端的请求不可能被立即处理。就需要IO多路复用模型来保证单线程的资源利用率和处理效率

4.数据类型

0.数据类型和底层数据结构的映射

image-20231005114008572

1.有哪些

五种数据类型:

String,Hash,List,Set,Zset(有序集合)

img

后面新加了四种:

BitMap、HyperLogLog、GEO、Stream

2.应用场景

  • String 类型的应用场景:缓存对象、计数(库存数量)、分布式锁、共享 session 信息等。

  • List 类型的应用场景:消息队列(但是有两个问题:1. 生产者需要自行实现全局唯一 ID;2. 不能以消费组形式消费数据)等。通过list取最新的N条数据

  • Hash 类型:缓存对象、购物车,redission分布式锁等。

  • Set 类型:聚合计算(并集、交集、差集)场景,比如点赞、共同关注、抽奖活动等。

  • Zset 类型:排序场景,比如排行榜、电话和姓名排序等。

具体应用内容见:Redis 常见数据类型和应用场景 | 小林coding (xiaolincoding.com)

  • BitMap(2.2 版新增):二值状态统计的场景,比如签到、判断用户登陆状态、连续签到用户总数等;

  • HyperLogLog(2.8 版新增):海量数据基数统计的场景,比如百万级网页 UV 计数等;

  • GEO(3.2 版新增):存储地理位置信息的场景,比如滴滴叫车;

  • Stream(5.0 版新增):消息队列,相比于基于 List 类型实现的消息队列,有这两个特有的特性:自动生成全局唯一消息ID,支持以消费组形式消费数据。

Set应用

集合的主要几个特性,无序、不可重复、支持并交差等操作。

因此 Set 类型比较适合用来数据去重和保障数据的唯一性,还可以用来统计多个集合的交集、错集和并集等,当我们存储的数据是无序并且需要去重的情况下,比较适合使用集合类型进行存储。

但是要提醒你一下,这里有一个潜在的风险。Set 的差集、并集和交集的计算复杂度较高,在数据量较大的情况下,如果直接执行这些计算,会导致 Redis 实例阻塞

在主从集群中,为了避免主库因为 Set 做聚合计算(交集、差集、并集)时导致主库被阻塞,我们可以选择一个从库完成聚合统计,或者把数据返回给客户端,由客户端来完成聚合统计

防止重复点赞

Set 类型可以保证一个用户只能点一个赞,这里举例子一个场景,key 是文章id,value 是用户id。

uid:1uid:2uid:3 三个用户分别对 article:1 文章点赞了。

# uid:1 用户对文章 article:1 点赞
> SADD article:1 uid:1
(integer) 1
# uid:2 用户对文章 article:1 点赞
> SADD article:1 uid:2
(integer) 1
# uid:3 用户对文章 article:1 点赞
> SADD article:1 uid:3
(integer) 1

uid:1 取消了对 article:1 文章点赞。

> SREM article:1 uid:1
(integer) 1

获取 article:1 文章所有点赞用户 :

> SMEMBERS article:1
1) "uid:3"
2) "uid:2"

获取 article:1 文章的点赞用户数量:

> SCARD article:1
(integer) 2

判断用户 uid:1 是否对文章 article:1 点赞了:

> SISMEMBER article:1 uid:1
(integer) 0  # 返回0说明没点赞,返回1则说明点赞了

共同关注

Set 类型支持交集运算,所以可以用来计算共同关注的好友、公众号等。

key 可以是用户id,value 则是已关注的公众号的id。

uid:1 用户关注公众号 id 为 5、6、7、8、9,uid:2 用户关注公众号 id 为 7、8、9、10、11。

# uid:1 用户关注公众号 id 为 5、6、7、8、9
> SADD uid:1 5 6 7 8 9
(integer) 5
# uid:2  用户关注公众号 id 为 7、8、9、10、11
> SADD uid:2 7 8 9 10 11
(integer) 5

uid:1uid:2 共同关注的公众号:

# 获取共同关注
> SINTER uid:1 uid:2
1) "7"
2) "8"
3) "9"

uid:2 推荐 uid:1 关注的公众号:

> SDIFF uid:1 uid:2
1) "5"
2) "6"

验证某个公众号是否同时被 uid:1uid:2 关注:

> SISMEMBER uid:1 5
(integer) 1 # 返回0,说明关注了
> SISMEMBER uid:2 5
(integer) 0 # 返回0,说明没关注
抽奖活动

存储某活动中中奖的用户名 ,Set 类型因为有去重功能,可以保证同一个用户不会中奖两次。

key为抽奖活动名,value为员工名称,把所有员工名称放入抽奖箱 :

>SADD lucky Tom Jerry John Sean Marry Lindy Sary Mark
(integer) 5

如果允许重复中奖,可以使用 SRANDMEMBER 命令。

# 抽取 1 个一等奖:
> SRANDMEMBER lucky 1
1) "Tom"
# 抽取 2 个二等奖:
> SRANDMEMBER lucky 2
1) "Mark"
2) "Jerry"
# 抽取 3 个三等奖:
> SRANDMEMBER lucky 3
1) "Sary"
2) "Tom"
3) "Jerry"

如果不允许重复中奖,可以使用 SPOP 命令。

# 抽取一等奖1个
> SPOP lucky 1
1) "Sary"
# 抽取二等奖2个
> SPOP lucky 2
1) "Jerry"
2) "Mark"
# 抽取三等奖3个
> SPOP lucky 3
1) "John"
2) "Sean"
3) "Lindy"

Zset应用

Zset 类型(Sorted Set,有序集合) 可以根据元素的权重来排序,我们可以自己来决定每个元素的权重值。比如说,我们可以根据元素插入 Sorted Set 的时间确定权重值,先插入的元素权重小,后插入的元素权重大。

在面对需要展示最新列表、排行榜等场景时,如果数据更新频繁或者需要分页显示,可以优先考虑使用 Sorted Set。‘

排行榜

有序集合比较典型的使用场景就是排行榜。例如学生成绩的排名榜、游戏积分排行榜、视频播放排名、电商系统中商品的销量排名等。

我们以博文点赞排名为例,小林发表了五篇博文,分别获得赞为 200、40、100、50、150。

# arcticle:1 文章获得了200个赞
> ZADD user:xiaolin:ranking 200 arcticle:1
(integer) 1
# arcticle:2 文章获得了40个赞
> ZADD user:xiaolin:ranking 40 arcticle:2
(integer) 1
# arcticle:3 文章获得了100个赞
> ZADD user:xiaolin:ranking 100 arcticle:3
(integer) 1
# arcticle:4 文章获得了50个赞
> ZADD user:xiaolin:ranking 50 arcticle:4
(integer) 1
# arcticle:5 文章获得了150个赞
> ZADD user:xiaolin:ranking 150 arcticle:5
(integer) 1

文章 arcticle:4 新增一个赞,可以使用 ZINCRBY 命令(为有序集合key中元素member的分值加上increment):

> ZINCRBY user:xiaolin:ranking 1 arcticle:4
"51"

查看某篇文章的赞数,可以使用 ZSCORE 命令(返回有序集合key中元素个数):

> ZSCORE user:xiaolin:ranking arcticle:4
"50"

获取小林文章赞数最多的 3 篇文章,可以使用 ZREVRANGE 命令(倒序获取有序集合 key 从start下标到stop下标的元素):

# WITHSCORES 表示把 score 也显示出来
> ZREVRANGE user:xiaolin:ranking 0 2 WITHSCORES
1) "arcticle:1"
2) "200"
3) "arcticle:5"
4) "150"
5) "arcticle:3"
6) "100"

获取小林 100 赞到 200 赞的文章,可以使用 ZRANGEBYSCORE 命令(返回有序集合中指定分数区间内的成员,分数由低到高排序):

> ZRANGEBYSCORE user:xiaolin:ranking 100 200 WITHSCORES
1) "arcticle:3"
2) "100"
3) "arcticle:5"
4) "150"
5) "arcticle:1"
6) "200"

电话、姓名排序

使用有序集合的 ZRANGEBYLEXZREVRANGEBYLEX 可以帮助我们实现电话号码或姓名的排序,我们以 ZRANGEBYLEX (返回指定成员区间内的成员,按 key 正序排列,分数必须相同)为例。

注意:不要在分数不一致的 SortSet 集合中去使用 ZRANGEBYLEX和 ZREVRANGEBYLEX 指令,因为获取的结果会不准确。

1、电话排序

我们可以将电话号码存储到 SortSet 中,然后根据需要来获取号段:

> ZADD phone 0 13100111100 0 13110114300 0 13132110901 
(integer) 3
> ZADD phone 0 13200111100 0 13210414300 0 13252110901 
(integer) 3
> ZADD phone 0 13300111100 0 13310414300 0 13352110901 
(integer) 3

获取所有号码:

> ZRANGEBYLEX phone - +
1) "13100111100"
2) "13110114300"
3) "13132110901"
4) "13200111100"
5) "13210414300"
6) "13252110901"
7) "13300111100"
8) "13310414300"
9) "13352110901"

获取 132 号段的号码:

> ZRANGEBYLEX phone [132 (133
1) "13200111100"
2) "13210414300"
3) "13252110901"

获取132、133号段的号码:

> ZRANGEBYLEX phone [132 (134
1) "13200111100"
2) "13210414300"
3) "13252110901"
4) "13300111100"
5) "13310414300"
6) "13352110901"

2、姓名排序

> zadd names 0 Toumas 0 Jake 0 Bluetuo 0 Gaodeng 0 Aimini 0 Aidehua 
(integer) 6

获取所有人的名字:

> ZRANGEBYLEX names - +
1) "Aidehua"
2) "Aimini"
3) "Bluetuo"
4) "Gaodeng"
5) "Jake"
6) "Toumas"

获取名字中大写字母A开头的所有人:

> ZRANGEBYLEX names [A (B
1) "Aidehua"
2) "Aimini"

获取名字中大写字母 C 到 Z 的所有人:

> ZRANGEBYLEX names [C [Z
1) "Gaodeng"
2) "Jake"
3) "Toumas"

3.数据类型

1.String

1.介绍

最基本的 key-value 结构,value不仅是字符串, 也可以是数字(整数或浮点数),value 最多可以容纳的数据长度是 512M

2.内部实现

底层的数据结构实现主要是 int 和 SDS(简单动态字符串)

sds详解

SDS 和我们认识的 C 字符串不太一样,之所以没有使用 C 语言的字符串表示,因为 SDS 相比于 C 的原生字符串:

1.二进制安全

sds相较于普通c语言string 来说,是二进制安全的,因为c语言是通过\0终止字符数组,如果字符串本身有\0,字符串就会被阶段,而sds通过使用len长度属性判断字符串是否结束

2.高效的字符串长度计算

在 C 语言中,字符串并不记录自身的长度信息,所以为了获取一个 C 字符串的长度,程序必须遍历整个字符串,整个时间复杂度为 O(N)

而sds定义了一个len属性,专门用于存储字符串的长度,获取字符串的长度操作的时间复杂度为 O(1),典型的空间换时间。

3.缓存区溢出

Redis 的 SDS API 是安全的,拼接字符串不会造成缓冲区溢出。

因为 SDS 在拼接字符串之前会检查 SDS 空间是否满足要求,如果空间不够会自动扩容,所以不会导致缓冲区溢出的问题

字符串对象基于sds在内存的存储机制

字符串对象的内部编码(encoding)有 3 种 :int、raw和 embstr

img

1.如果字符串对象保存的是整数值

字符串对象会将整数值保存在字符串对象结构的ptr属性里面(将void*转换成 long),并将字符串对象的编码设置为 int

img

2.保存的是字符串,且长度小于32字节

字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为embstrembstr编码是专门用于保存短字符串的一种优化编码方式

img

3.保存的是字符串,且长度大于32字节

字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为raw

img

embstr`和`raw`编码都会使用`SDS`来保存值,但不同之处在于`embstr`会通过一次内存分配函数来分配一块连续的内存空间来保存`redisObject`和`SDS`,而`raw`编码会通过调用两次内存分配函数来分别分配两块空间来保存`redisObject`和`SDS

这样做会有很多好处:

  • 创建字符串对象只需要一次内存分配;

  • 释放 embstr编码的字符串对象同样只需要调用一次内存释放函数;

  • 因为embstr编码的字符串对象的所有数据都保存在一块连续的内存里面。可以更好的利用 CPU 缓存提升性能。

缺点:

  • 因为Redis没有为embstr编码的字符串对象编写任何相应的修改程序,所以embstr编码的字符串对象实际上只读的。当我们对embstr编码的字符串对象执行任何修改命令时,程序会先将对象的编码从embstr转换raw,然后再执行相应的修改命令。因为这个原因,embstr编码的字符串对象在执行修改命令之后,总会变成一个raw编码的字符串对象 ,会重新分配一块内存用来存储SDS。

2.List

1.介绍

List 列表是简单的字符串列表,按照插入顺序排序,可以从头部或尾部向 List 列表添加元素。

列表的最大长度为 2^32 - 1,也即每个列表支持超过 40 亿个元素

2.内部实现

底层数据结构是由双向链表或压缩列表实现的

  • 如果列表的元素个数小于 512 个(默认值,可由 list-max-ziplist-entries 配置),列表每个元素的值都小于 64 字节(默认值,可由 list-max-ziplist-value 配置),Redis 会使用压缩列表作为 List 类型的底层数据结构;

  • 如果列表的元素不满足上面的条件,Redis 会使用双向链表作为 List 类型的底层数据结构;

但是在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表

3.Hash

1.介绍

Hash 是一个键值对(key - value)集合,其中 value 的形式如: value=[{field1,value1},...{fieldN,valueN}]。Hash 特别适合用于存储对象。

image-20231005165508581

2.内部实现

底层数据结构是由压缩列表或哈希表实现的

  • 如果哈希类型元素个数小于 512 个(默认值,可由 hash-max-ziplist-entries 配置),所有值小于 64 字节(默认值,可由 hash-max-ziplist-value 配置)的话,Redis 会使用压缩列表作为 Hash 类型的底层数据结构;

  • 如果哈希类型元素不满足上面条件,Redis 会使用哈希表作为 Hash 类型的 底层数据结构。

在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了

4.Set

1.介绍

Set 类型是一个无序并唯一的键值集合,它的存储顺序不会按照插入的先后顺序进行存储。

一个集合最多可以存储 2^32-1 个元素。概念和数学中个的集合基本类似,可以交集,并集,差集等等,所以 Set 类型除了支持集合内的增删改查,同时还支持多个集合取交集、并集、差集。

2.内部实现

底层数据结构是由哈希表或整数集合实现的:

  • 如果集合中的元素都是整数且元素个数小于 512 (默认值,set-maxintset-entries配置)个,Redis 会使用整数集合作为 Set 类型的底层数据结构;

  • 如果集合中的元素不满足上面条件,则 Redis 使用哈希表作为 Set 类型的底层数据结构。

5.Zset

1.介绍

Zset 类型(有序集合类型)相比于 Set 类型多了一个排序属性 score(分值),对于有序集合 ZSet 来说,每个存储元素相当于有两个值组成的,一个是有序集合的元素值,一个是排序值。

有序集合唯一但有序。

2.内部实现

Zset 类型的底层数据结构是由压缩列表或跳表实现的:

  • 如果有序集合的元素个数小于 128 个,并且每个元素的值小于 64 字节时,Redis 会使用压缩列表作为 Zset 类型的底层数据结构;

  • 如果有序集合的元素不满足上面的条件,Redis 会使用跳表作为 Zset 类型的底层数据结构;

在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。

6.BitMap

1.介绍

Bitmap,即位图,是一串连续的二进制数组(0和1),可以通过偏移量(offset)定位元素。BitMap通过最小的单位bit来进行0|1的设置,表示某个元素的值或者状态,时间复杂度为O(1)。

由于 bit 是计算机中最小的单位,使用它进行储存将非常节省空间,特别适合一些数据量大且使用二值统计的场景

img

2.内部实现

Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。

String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态,你可以把 Bitmap 看作是一个 bit 数组。

7.HyperLogLog

1.介绍

是一种用于「统计基数」的数据集合类型,基数统计就是指统计一个集合中不重复的元素个数。但要注意,HyperLogLog 是统计规则是基于概率完成的,不是非常准确,标准误算率是 0.81%。

所以,简单来说 HyperLogLog 提供不精确的去重计数

HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的内存空间总是固定的、并且是很小的。

在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。

8.GEO

1.介绍

用于存储地理位置信息,并对存储的信息进行操作

适用于查询相邻的经纬度范围

2.内部实现

GEO 本身并没有设计新的底层数据结构,而是直接使用了 Sorted Set 集合类型。

GEO 类型使用 GeoHash 编码方法实现了经纬度到 Sorted Set 中元素权重分数的转换,这其中的两个关键机制就是「对二维地图做区间划分」和「对区间进行编码」。一组经纬度落在某个区间后,就用区间的编码值来表示,并把编码值作为 Sorted Set 元素的权重分数。

这样一来,我们就可以把经纬度保存到 Sorted Set 中,利用 Sorted Set 提供的“按权重进行有序范围查找”的特性,实现 LBS 服务中频繁使用的“搜索附近”的需求

9.Stream

1.介绍

Redis Stream 是 Redis 5.0 版本新增加的数据类型,Redis 专门为消息队列设计的数据类型。

在 Redis 5.0 Stream 没出来之前,消息队列的实现方式都有着各自的缺陷,例如:

  • 发布订阅模式,不能持久化也就无法可靠的保存消息,并且对于离线重连的客户端不能读取历史消息的缺陷;

  • List 实现消息队列的方式不能多个消费者消费同一个消息,一个消息消费完就会被删除(不支持消费组模式),而且生产者需要自行实现全局唯一 ID来防止重复消费。

基于以上问题,Redis 5.0 便推出了 Stream 类型也是此版本最重要的功能,用于完美地实现消息队列,它支持消息的持久化、支持自动生成全局唯一 ID、支持 ack 确认消息的模式、支持消费组模式等,让消息队列更加的稳定和可靠

4.Redis数据结构

Redis 为什么那么快?

除了它是内存数据库,使得所有的操作都在内存上进行之外,还有一个重要因素,它实现的数据结构,使得我们对数据进行增删查改操作时,Redis 能高效的处理。

img

可以看到,Redis 数据类型的底层数据结构随着版本的更新也有所不同,比如:

  • 在 Redis 3.0 版本中 List 对象的底层数据结构由「双向链表」或「压缩表列表」实现,但是在 3.2 版本之后,List 数据类型底层数据结构是由 quicklist 实现的;

  • 在最新的 Redis 代码中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。

img

键值对数据库是怎么实现的?

在开始讲数据结构之前,先给介绍下 Redis 是怎样实现键值对(key-value)数据库的。

Redis 的键值对中的 key 就是字符串对象,而 value 可以是字符串对象,也可以是集合数据类型的对象,比如 List 对象、Hash 对象、Set 对象和 Zset 对象。

举个例子,我这里列出几种 Redis 新增键值对的命令:

> SET name "xiaolincoding"
OK

> HSET person name "xiaolincoding" age 18
0

> RPUSH stu "xiaolin" "xiaomei"
(integer) 4

这些命令代表着:

  • 第一条命令:name 是一个字符串键,因为键的值是一个字符串对象

  • 第二条命令:person 是一个哈希表键,因为键的值是一个包含两个键值对的哈希表对象

  • 第三条命令:stu 是一个列表键,因为键的值是一个包含两个元素的列表对象

这些键值对是如何保存在 Redis 中的呢?

Redis 是使用了一个「哈希表」保存所有键值对,哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找到键值对。哈希表其实就是一个数组,数组中的元素叫做哈希桶。

Redis 的哈希桶是怎么保存键值对数据的呢?

哈希桶存放的是指向键值对数据的指针(dictEntry*),这样通过指针就能找到键值对数据,然后因为键值对的值可以保存字符串对象和集合数据类型的对象,所以键值对的数据结构中并不是直接保存值本身,而是保存了 void key 和 void value 指针,分别指向了实际的键对象和值对象,这样一来,即使值是集合数据,也可以通过 void * value 指针找到。

我这里画了一张 Redis 保存键值对所涉及到的数据结构。

img

这些数据结构的内部细节,我先不展开讲,后面在讲哈希表数据结构的时候,在详细的说说,因为用到的数据结构是一样的。这里先大概说下图中涉及到的数据结构的名字和用途:

  • redisDb 结构,表示 Redis 数据库的结构,结构体里存放了指向了 dict 结构的指针;

  • dict 结构,结构体里存放了 2 个哈希表,正常情况下都是用「哈希表1」,「哈希表2」只有在 rehash 的时候才用,具体什么是 rehash,我在本文的哈希表数据结构会讲;

  • ditctht 结构,表示哈希表的结构,结构里存放了哈希表数组,数组中的每个元素都是指向一个哈希表节点结构(dictEntry)的指针;

  • dictEntry 结构,表示哈希表节点的结构,结构里存放了 void key 和 void value 指针, key 指向的是 String 对象,而 value 则可以指向 String 对象,也可以指向集合类型的对象,比如 List 对象、Hash 对象、Set 对象和 Zset 对象

特别说明下,void key 和 void value 指针指向的是 Redis 对象(redisObject),key指向的一定是string对象,但value可以指向集合,Redis 中的每个对象都由 redisObject 结构表示,如下图:

img

对象结构里包含的成员变量:

  • type,标识该对象是什么类型的对象(String 对象、 List 对象、Hash 对象、Set 对象和 Zset 对象);

  • encoding,标识该对象使用了哪种底层的数据结构;

  • ptr,指向底层数据结构的指针

我画了一张 Redis 键值对数据库的全景图,你就能清晰知道 Redis 对象和数据结构的关系了:

img

接下里,就好好聊一下底层数据结构

SDS

字符串在 Redis 中是很常用的,键值对中的键是字符串类型,值有时也是字符串类型。

Redis 是用 C 语言实现的,但是它没有直接使用 C 语言的 char* 字符数组来实现字符串,而是自己封装了一个名为简单动态字符串(simple dynamic string,SDS) 的数据结构来表示字符串,也就是 Redis 的 String 数据类型的底层数据结构是 SDS。

既然 Redis 设计了 SDS 结构来表示字符串,肯定是 C 语言的 char* 字符数组存在一些缺陷。

要了解这一点,得先来看看 char* 字符数组的结构。

#C 语言字符串的缺陷

C 语言的字符串其实就是一个字符数组,即数组中每个元素是字符串中的一个字符。

比如,下图就是字符串“xiaolin”的 char* 字符数组的结构:

img

没学过 C 语言的同学,可能会好奇为什么最后一个字符是“\0”?

在 C 语言里,对字符串操作时,char * 指针只是指向字符数组的起始位置,而字符数组的结尾位置就用“\0”表示,意思是指字符串的结束

因此,C 语言标准库中的字符串操作函数就通过判断字符是不是 “\0” 来决定要不要停止操作,如果当前字符不是 “\0” ,说明字符串还没结束,可以继续操作,如果当前字符是 “\0” 是则说明字符串结束了,就要停止操作。

举个例子,C 语言获取字符串长度的函数 strlen,就是通过字符数组中的每一个字符,并进行计数,等遇到字符为 “\0” 后,就会停止遍历,然后返回已经统计到的字符个数,即为字符串长度。下图显示了 strlen 函数的执行流程:

img

很明显,C 语言获取字符串长度的时间复杂度是 O(N)(*这是一个可以改进的地方*

C 语言字符串用 “\0” 字符作为结尾标记有个缺陷。假设有个字符串中有个 “\0” 字符,这时在操作这个字符串时就会提早结束,比如 “xiao\0lin” 字符串,计算字符串长度的时候则会是 4,如下图:

img

因此,除了字符串的末尾之外,字符串里面不能含有 “\0” 字符,否则最先被程序读入的 “\0” 字符将被误认为是字符串结尾,这个限制使得 C 语言的字符串只能保存文本数据,不能保存像图片、音频、视频文化这样的二进制数据(*这也是一个可以改进的地方*)

PS:为什么叫二进制安全,就是因为二进制的数据,总有可能凑出来几位二进制数转成字符时是\0的

另外, C 语言标准库中字符串的操作函数是很不安全的,对程序员很不友好,稍微一不注意,就会导致缓冲区溢出。

举个例子,strcat 函数是可以将两个字符串拼接在一起。

//将 src 字符串拼接到 dest 字符串后面
char *strcat(char *dest, const char* src);

C 语言的字符串是不会记录自身的缓冲区大小的,所以 strcat 函数假定程序员在执行这个函数时,已经为 dest 分配了足够多的内存,可以容纳 src 字符串中的所有内容,而一旦这个假定不成立,就会发生缓冲区溢出将可能会造成程序运行终止,(*这是一个可以改进的地方*)。

而且,strcat 函数和 strlen 函数类似,时间复杂度也很高,也都需要先通过遍历字符串才能得到目标字符串的末尾。然后对于 strcat 函数来说,还要再遍历源字符串才能完成追加,对字符串的操作效率不高

好了, 通过以上的分析,我们可以得知 C 语言的字符串不足之处以及可以改进的地方:

  • 获取字符串长度的时间复杂度为 O(N);

  • 字符串的结尾是以 “\0” 字符标识,字符串里面不能包含有 “\0” 字符,因此不能保存二进制数据;

  • 字符串操作函数不高效且不安全,比如有缓冲区溢出的风险,有可能会造成程序运行终止;

Redis 实现的 SDS 的结构就把上面这些问题解决了,接下来我们一起看看 Redis 是如何解决的。

结构设计

下图就是 Redis 5.0 的 SDS 的数据结构:

img

结构中的每个成员变量分别介绍下:

  • len,记录了字符串长度。这样获取字符串长度的时候,只需要返回这个成员变量值就行,时间复杂度只需要 O(1)。

  • alloc,分配给字符数组的空间长度。这样在修改字符串的时候,可以通过 alloc - len 计算出剩余的空间大小,可以用来判断空间是否满足修改需求,如果不满足的话,就会自动将 SDS 的空间扩展至执行修改所需的大小,然后才执行实际的修改操作,所以使用 SDS 既不需要手动修改 SDS 的空间大小,也不会出现前面所说的缓冲区溢出的问题。

  • flags,用来表示不同类型的 SDS。一共设计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64,后面在说明区别之处。

  • buf[],字符数组,用来保存实际数据。不仅可以保存字符串,也可以保存二进制数据。

总的来说,Redis 的 SDS 结构在原本字符数组之上,增加了三个元数据:len、alloc、flags,用来解决 C 语言字符串的缺陷。

#O(1)复杂度获取字符串长度

C 语言的字符串长度获取 strlen 函数,需要通过遍历的方式来统计字符串长度,时间复杂度是 O(N)。

而 Redis 的 SDS 结构因为加入了 len 成员变量,那么获取字符串长度的时候,直接返回这个成员变量的值就行,所以复杂度只有 O(1)

#二进制安全

因为 SDS 不需要用 “\0” 字符来标识字符串结尾了,而是有个专门的 len 成员变量来记录长度,所以可存储包含 “\0” 的数据。但是 SDS 为了兼容部分 C 语言标准库的函数, SDS 字符串结尾还是会加上 “\0” 字符。

因此, SDS 的 API 都是以处理二进制的方式来处理 SDS 存放在 buf[] 里的数据,程序不会对其中的数据做任何限制,数据写入的时候时什么样的,它被读取时就是什么样的。

通过使用二进制安全的 SDS,而不是 C 字符串,使得 Redis 不仅可以保存文本数据,也可以保存任意格式的二进制数据。

#不会发生缓冲区溢出

C 语言的字符串标准库提供的字符串操作函数,大多数(比如 strcat 追加字符串函数)都是不安全的,因为这些函数把缓冲区大小是否满足操作需求的工作交由开发者来保证,程序内部并不会判断缓冲区大小是否足够用,当发生了缓冲区溢出就有可能造成程序异常结束。

所以,Redis 的 SDS 结构里引入了 alloc 和 len 成员变量,这样 SDS API 通过 alloc - len 计算,可以算出剩余可用的空间大小,这样在对字符串做修改操作的时候,就可以由程序内部判断缓冲区大小是否足够用。

而且,当判断出缓冲区大小不够用时,Redis 会自动将扩大 SDS 的空间大小,以满足修改所需的大小。

SDS 扩容的规则代码如下:

hisds hi_sdsMakeRoomFor(hisds s, size_t addlen)
{
    ... ...
    // s目前的剩余空间已足够,无需扩展,直接返回
    if (avail >= addlen)
        return s;
    //获取目前s的长度
    len = hi_sdslen(s);
    sh = (char *)s - hi_sdsHdrSize(oldtype);
    //扩展之后 s 至少需要的长度
    newlen = (len + addlen);
    //根据新长度,为s分配新空间所需要的大小
    if (newlen < HI_SDS_MAX_PREALLOC)
        //新长度<HI_SDS_MAX_PREALLOC 则分配所需空间*2的空间
        newlen *= 2;
    else
        //否则,分配长度为目前长度+1MB
        newlen += HI_SDS_MAX_PREALLOC;
       ...
}
  • 如果所需的 sds 长度小于 1 MB,那么最后的扩容是按照翻倍扩容来执行的,即 2 倍的newlen

  • 如果所需的 sds 长度超过 1 MB,那么最后的扩容长度应该是 newlen + 1MB

在扩容 SDS 空间之前,SDS API 会优先检查未使用空间是否足够,如果不够的话,API 不仅会为 SDS 分配修改所必须要的空间,还会给 SDS 分配额外的「未使用空间」。

这样的好处是,下次在操作 SDS 时,如果 SDS 空间够的话,API 就会直接使用「未使用空间」,而无须执行内存分配,有效的减少内存分配次数

所以,使用 SDS 即不需要手动修改 SDS 的空间大小,也不会出现缓冲区溢出的问题。

#节省内存空间

SDS 结构中有个 flags 成员变量,表示的是 SDS 类型。

Redis 一共设计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64。

这 5 种类型的主要区别就在于,它们数据结构中的 len 和 alloc 成员变量的数据类型不同

比如 sdshdr16 和 sdshdr32 这两个类型,它们的定义分别如下:

struct __attribute__ ((__packed__)) sdshdr16 {
    uint16_t len;
    uint16_t alloc; 
    unsigned char flags; 
    char buf[];
};


struct __attribute__ ((__packed__)) sdshdr32 {
    uint32_t len;
    uint32_t alloc; 
    unsigned char flags;
    char buf[];
};

可以看到:

  • sdshdr16 类型的 len 和 alloc 的数据类型都是 uint16_t,表示字符数组长度和分配空间大小不能超过 2 的 16 次方。

  • sdshdr32 则都是 uint32_t,表示表示字符数组长度和分配空间大小不能超过 2 的 32 次方。

之所以 SDS 设计不同类型的结构体,是为了能灵活保存不同大小的字符串,从而有效节省内存空间。比如,在保存小字符串时,结构头占用空间也比较少。

除了设计不同类型的结构体,Redis 在编程上还使用了专门的编译优化来节省内存空间,即在 struct 声明了 __attribute__ ((packed)) ,它的作用是:告诉编译器取消结构体在编译过程中的优化对齐,按照实际占用字节数进行对齐

比如,sdshdr16 类型的 SDS,默认情况下,编译器会按照 2 字节对齐的方式给变量分配内存,这意味着,即使一个变量的大小不到 2 个字节,编译器也会给它分配 2 个字节。

举个例子,假设下面这个结构体,它有两个成员变量,类型分别是 char 和 int,如下所示:

#include <stdio.h>

struct test1 {
    char a;
    int b;
 } test1;
 
int main() {
     printf("%lu\n", sizeof(test1));
     return 0;
}

大家猜猜这个结构体大小是多少?我先直接说答案,这个结构体大小计算出来是 8。

img

这是因为默认情况下,编译器是使用「字节对齐」的方式分配内存,虽然 char 类型只占一个字节,但是由于成员变量里有 int 类型,它占用了 4 个字节,所以在成员变量为 char 类型分配内存时,会分配 4 个字节,其中这多余的 3 个字节是为了字节对齐而分配的,相当于有 3 个字节被浪费掉了。

如果不想编译器使用字节对齐的方式进行分配内存,可以采用了 __attribute__ ((packed)) 属性定义结构体,这样一来,结构体实际占用多少内存空间,编译器就分配多少空间。

比如,我用 __attribute__ ((packed)) 属性定义下面的结构体 ,同样包含 char 和 int 两个类型的成员变量,代码如下所示:

#include <stdio.h>

struct __attribute__((packed)) test2  {
    char a;
    int b;
 } test2;
 
int main() {
     printf("%lu\n", sizeof(test2));
     return 0;
}

这时打印的结果是 5(1 个字节 char + 4 字节 int)。

img

可以看得出,这是按照实际占用字节数进行分配内存的,这样可以节省内存空间。

链表

链表节点结构设计

先来看看「链表节点」结构的样子:

typedef struct listNode {
    //前置节点
    struct listNode *prev;
    //后置节点
    struct listNode *next;
    //节点的值
    void *value;
} listNode

这个是一个双向链表。

链表的缺陷也是有的:

  • 链表每个节点之间的内存都是不连续的,意味着无法很好利用 CPU 缓存。能很好利用 CPU 缓存的数据结构就是数组,因为数组的内存是连续的,这样就可以充分利用 CPU 缓存来加速访问。

  • 还有一点,保存一个链表节点的值都需要一个链表节点结构体的分配,内存开销较大

压缩列表

压缩列表的最大特点,就是它被设计成一种内存紧凑型的数据结构,占用一块连续的内存空间,不仅可以利用 CPU 缓存,而且会针对不同长度的数据,进行相应编码,这种方法可以有效地节省内存开销。

但是,压缩列表的缺陷也是有的:

  • 不能保存过多的元素,否则查询效率就会降低;

  • 新增或修改某个元素时,压缩列表占用的内存空间需要重新分配,甚至可能引发连锁更新的问题。

因此,Redis 对象(List 对象、Hash 对象、Zset 对象)包含的元素数量较少,或者元素值不大的情况才会使用压缩列表作为底层数据结构。

接下来,就跟大家详细聊下压缩列表。

#压缩列表结构设计

压缩列表是 Redis 为了节约内存而开发的,它是由连续内存块组成的顺序型数据结构,有点类似于数组。

img

压缩列表在表头有三个字段:

  • zlbytes,记录整个压缩列表占用对内存字节数;

  • zltail,记录压缩列表「尾部」节点距离起始地址由多少字节,也就是列表尾的偏移量;

  • zllen,记录压缩列表包含的节点数量;

  • zlend,标记压缩列表的结束点,固定值 0xFF(十进制255)。

在压缩列表中,如果我们要查找定位第一个元素和最后一个元素,可以通过表头三个字段(zllen)的长度直接定位,复杂度是 O(1)。而查找其他元素时,就没有这么高效了,只能逐个查找,此时的复杂度就是 O(N) 了,因此压缩列表不适合保存过多的元素

另外,压缩列表节点(entry)的构成如下:

img

压缩列表节点包含三部分内容:

  • prevlen,记录了「前一个节点」的长度,目的是为了实现从后向前遍历;

  • encoding,记录了当前节点实际数据的「类型和长度」,类型主要有两种:字符串和整数。

  • data,记录了当前节点的实际数据,类型和长度都由 encoding 决定;

当我们往压缩列表中插入数据时,压缩列表就会根据数据类型是字符串还是整数,以及数据的大小,会使用不同空间大小的 prevlen 和 encoding 这两个元素里保存的信息,这种根据数据大小和类型进行不同的空间大小分配的设计思想,正是 Redis 为了节省内存而采用的

分别说下,prevlen 和 encoding 是如何根据数据的大小和类型来进行不同的空间大小分配。

压缩列表里的每个节点中的 prevlen 属性都记录了「前一个节点的长度」,而且 prevlen 属性的空间大小跟前一个节点长度值有关,比如:

  • 如果前一个节点的长度小于 254 字节,那么 prevlen 属性需要用 1 字节的空间来保存这个长度值;

  • 如果前一个节点的长度大于等于 254 字节,那么 prevlen 属性需要用 5 字节的空间来保存这个长度值;

encoding 属性的空间大小跟数据是字符串还是整数,以及字符串的长度有关,如下图(下图中的 content 表示的是实际数据,即本文的 data 字段):

img

  • 如果当前节点的数据是整数,则 encoding 会使用 1 字节的空间进行编码,也就是 encoding 长度为 1 字节。通过 encoding 确认了整数类型,就可以确认整数数据的实际大小了,比如如果 encoding 编码确认了数据是 int16 整数,那么 data 的长度就是 int16 的大小。

  • 如果当前节点的数据是字符串,根据字符串的长度大小,encoding 会使用 1 字节/2字节/5字节的空间进行编码,encoding 编码的前两个 bit 表示数据的类型,后续的其他 bit 标识字符串数据的实际长度,即 data 的长度。

#连锁更新

压缩列表除了查找复杂度高的问题,还有一个问题。

压缩列表新增某个元素或修改某个元素时,如果空间不不够,压缩列表占用的内存空间就需要重新分配。而当新插入的元素较大时,可能会导致后续元素的 prevlen 占用空间都发生变化,从而引起「连锁更新」问题,导致每个元素的空间都要重新分配,造成访问压缩列表性能的下降

前面提到,压缩列表节点的 prevlen 属性会根据前一个节点的长度进行不同的空间大小分配:

  • 如果前一个节点的长度小于 254 字节,那么 prevlen 属性需要用 1 字节的空间来保存这个长度值;

  • 如果前一个节点的长度大于等于 254 字节,那么 prevlen 属性需要用 5 字节的空间来保存这个长度值;

现在假设一个压缩列表中有多个连续的、长度在 250~253 之间的节点,如下图:

img

因为这些节点长度值小于 254 字节,所以 prevlen 属性需要用 1 字节的空间来保存这个长度值。

这时,如果将一个长度大于等于 254 字节的新节点加入到压缩列表的表头节点,即新节点将成为 e1 的前置节点,如下图:

img

因为 e1 节点的 prevlen 属性只有 1 个字节大小,无法保存新节点的长度,此时就需要对压缩列表的空间重分配操作,并将 e1 节点的 prevlen 属性从原来的 1 字节大小扩展为 5 字节大小。

多米诺牌的效应就此开始。

img

e1 原本的长度在 250~253 之间,因为刚才的扩展空间,此时 e1 的长度就大于等于 254 了,因此原本 e2 保存 e1 的 prevlen 属性也必须从 1 字节扩展至 5 字节大小。

正如扩展 e1 引发了对 e2 扩展一样,扩展 e2 也会引发对 e3 的扩展,而扩展 e3 又会引发对 e4 的扩展.... 一直持续到结尾。

这种在特殊情况下产生的连续多次空间扩展操作就叫做「连锁更新」,就像多米诺牌的效应一样,第一张牌倒下了,推动了第二张牌倒下;第二张牌倒下,又推动了第三张牌倒下....,

#压缩列表的缺陷

空间扩展操作也就是重新分配内存,因此连锁更新一旦发生,就会导致压缩列表占用的内存空间要多次重新分配,这就会直接影响到压缩列表的访问性能

所以说,虽然压缩列表紧凑型的内存布局能节省内存开销,但是如果保存的元素数量增加了,或是元素变大了,会导致内存重新分配,最糟糕的是会有「连锁更新」的问题

因此,压缩列表只会用于保存的节点数量不多的场景,只要节点数量足够小,即使发生连锁更新,也是能接受的。

虽说如此,Redis 针对压缩列表在设计上的不足,在后来的版本中,新增设计了两种数据结构:quicklist(Redis 3.2 引入) 和 listpack(Redis 5.0 引入)。这两种数据结构的设计目标,就是尽可能地保持压缩列表节省内存的优势,同时解决压缩列表的「连锁更新」的问题

哈希表

哈希表是一种保存键值对(key-value)的数据结构。

哈希表中的每一个 key 都是独一无二的,程序可以根据 key 查找到与之关联的 value,或者通过 key 来更新 value,又或者根据 key 来删除整个 key-value等等。

在讲压缩列表的时候,提到过 Redis 的 Hash 对象的底层实现之一是压缩列表(最新 Redis 代码已将压缩列表替换成 listpack)。Hash 对象的另外一个底层实现就是哈希表。

哈希表优点在于,它能以 O(1) 的复杂度快速查询数据。怎么做到的呢?将 key 通过 Hash 函数的计算,就能定位数据在表中的位置,因为哈希表实际上是数组,所以可以通过索引值快速查询到数据。

但是存在的风险也是有,在哈希表大小固定的情况下,随着数据不断增多,那么哈希冲突的可能性也会越高。

解决哈希冲突的方式,有很多种。

Redis 采用了「链式哈希」来解决哈希冲突,在不扩容哈希表的前提下,将具有相同哈希值的数据串起来,形成链接起,以便这些数据在表中仍然可以被查询到。

接下来,详细说说哈希表。

#哈希表结构设计

Redis 的哈希表结构如下:

typedef struct dictht {
    //哈希表数组
    dictEntry **table;
    //哈希表大小
    unsigned long size;  
    //哈希表大小掩码,用于计算索引值
    unsigned long sizemask;
    //该哈希表已有的节点数量
    unsigned long used;
} dictht;

可以看到,哈希表是一个数组(dictEntry **table),数组的每个元素是一个指向「哈希表节点(dictEntry)」的指针。

img

哈希表节点的结构如下:

typedef struct dictEntry {
    //键值对中的键
    void *key;
  
    //键值对中的值
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    //指向下一个哈希表节点,形成链表
    struct dictEntry *next;
} dictEntry;

dictEntry 结构里不仅包含指向键和值的指针,还包含了指向下一个哈希表节点的指针,这个指针可以将多个哈希值相同的键值对链接起来,以此来解决哈希冲突的问题,这就是链式哈希。

另外,这里还跟你提一下,dictEntry 结构里键值对中的值是一个「联合体 v」定义的,因此,键值对中的值可以是一个指向实际值的指针,或者是一个无符号的 64 位整数或有符号的 64 位整数或double 类的值。这么做的好处是可以节省内存空间,因为当「值」是整数或浮点数时,就可以将值的数据内嵌在 dictEntry 结构里,无需再用一个指针指向实际的值,从而节省了内存空间。

#哈希冲突

哈希表实际上是一个数组,数组里多每一个元素就是一个哈希桶。

当一个键值对的键经过 Hash 函数计算后得到哈希值,再将(哈希值 % 哈希表大小)取模计算,得到的结果值就是该 key-value 对应的数组元素位置,也就是第几个哈希桶。

什么是哈希冲突呢?

举个例子,有一个可以存放 8 个哈希桶的哈希表。key1 经过哈希函数计算后,再将「哈希值 % 8 」进行取模计算,结果值为 1,那么就对应哈希桶 1,类似的,key9 和 key10 分别对应哈希桶 1 和桶 6。

img

此时,key1 和 key9 对应到了相同的哈希桶中,这就发生了哈希冲突。

因此,当有两个以上数量的 kay 被分配到了哈希表中同一个哈希桶上时,此时称这些 key 发生了冲突。

#链式哈希

Redis 采用了「链式哈希」的方法来解决哈希冲突。

链式哈希是怎么实现的?

实现的方式就是每个哈希表节点都有一个 next 指针,用于指向下一个哈希表节点,因此多个哈希表节点可以用 next 指针构成一个单项链表,被分配到同一个哈希桶上的多个节点可以用这个单项链表连接起来,这样就解决了哈希冲突。

还是用前面的哈希冲突例子,key1 和 key9 经过哈希计算后,都落在同一个哈希桶,链式哈希的话,key1 就会通过 next 指针指向 key9,形成一个单向链表。

img

不过,链式哈希局限性也很明显,随着链表长度的增加,在查询这一位置上的数据的耗时就会增加,毕竟链表的查询的时间复杂度是 O(n)。

要想解决这一问题,就需要进行 rehash,也就是对哈希表的大小进行扩展。

接下来,看看 Redis 是如何实现的 rehash 的。

#rehash

哈希表结构设计的这一小节,我给大家介绍了 Redis 使用 dictht 结构体表示哈希表。不过,在实际使用哈希表时,Redis 定义一个 dict 结构体,这个结构体里定义了两个哈希表(ht[2])

typedef struct dict {
    …
    //两个Hash表,交替使用,用于rehash操作
    dictht ht[2]; 
    …
} dict;

之所以定义了 2 个哈希表,是因为进行 rehash 的时候,需要用上 2 个哈希表了。

img

在正常服务请求阶段,插入的数据,都会写入到「哈希表 1」,此时的「哈希表 2 」 并没有被分配空间。

随着数据逐步增多,触发了 rehash 操作,这个过程分为三步:

  • 给「哈希表 2」 分配空间,一般会比「哈希表 1」 大 2 倍;

  • 将「哈希表 1 」的数据迁移到「哈希表 2」 中;

  • 迁移完成后,「哈希表 1 」的空间会被释放,并把「哈希表 2」 设置为「哈希表 1」,然后在「哈希表 2」 新创建一个空白的哈希表,为下次 rehash 做准备。

为了方便你理解,我把 rehash 这三个过程画在了下面这张图:

img

这个过程看起来简单,但是其实第二步很有问题,如果「哈希表 1 」的数据量非常大,那么在迁移至「哈希表 2 」的时候,因为会涉及大量的数据拷贝,此时可能会对 Redis 造成阻塞,无法服务其他请求

#渐进式 rehash

为了避免 rehash 在数据迁移过程中,因拷贝数据的耗时,影响 Redis 性能的情况,所以 Redis 采用了渐进式 rehash,也就是将数据的迁移的工作不再是一次性迁移完成,而是分多次迁移。

渐进式 rehash 步骤如下:

  • 给「哈希表 2」 分配空间;

  • 在 rehash 进行期间,每次哈希表元素进行新增、删除、查找或者更新操作时,Redis 除了会执行对应的操作之外,还会顺序将「哈希表 1 」中索引位置上的所有 key-value 迁移到「哈希表 2」 上

  • 随着处理客户端发起的哈希表操作请求数量越多,最终在某个时间点会把「哈希表 1 」的所有 key-value 迁移到「哈希表 2」,从而完成 rehash 操作。

这样就巧妙地把一次性大量数据迁移工作的开销,分摊到了多次处理请求的过程中,避免了一次性 rehash 的耗时操作。

在进行渐进式 rehash 的过程中,会有两个哈希表,所以在渐进式 rehash 进行期间,哈希表元素的删除、查找、更新等操作都会在这两个哈希表进行。

比如,查找一个 key 的值的话,先会在「哈希表 1」 里面进行查找,如果没找到,就会继续到哈希表 2 里面进行找到。

另外,在渐进式 rehash 进行期间,新增一个 key-value 时,会被保存到「哈希表 2 」里面,而「哈希表 1」 则不再进行任何添加操作,这样保证了「哈希表 1 」的 key-value 数量只会减少,随着 rehash 操作的完成,最终「哈希表 1 」就会变成空表。

#rehash 触发条件

介绍了 rehash 那么多,还没说什么时情况下会触发 rehash 操作呢?

rehash 的触发条件跟负载因子(load factor)有关系。

负载因子可以通过下面这个公式计算:

img

触发 rehash 操作的条件,主要有两个:

  • 当负载因子大于等于 1 ,并且 Redis 没有在执行 bgsave 命令或者 bgrewiteaof 命令,也就是没有执行 RDB 快照或没有进行 AOF 重写的时候,就会进行 rehash 操作。

  • 当负载因子大于等于 5 时,此时说明哈希冲突非常严重了,不管有没有有在执行 RDB 快照或 AOF 重写,都会强制进行 rehash 操作。

整数集合

整数集合是 Set 对象的底层实现之一。当一个 Set 对象只包含整数值元素,并且元素数量不大时,就会使用整数集这个数据结构作为底层实现。

#整数集合结构设计

整数集合本质上是一块连续内存空间,它的结构定义如下:

typedef struct intset {
    //编码方式
    uint32_t encoding;
    //集合包含的元素数量
    uint32_t length;
    //保存元素的数组
    int8_t contents[];
} intset;

可以看到,保存元素的容器是一个 contents 数组,虽然 contents 被声明为 int8_t 类型的数组,但是实际上 contents 数组并不保存任何 int8_t 类型的元素,contents 数组的真正类型取决于 intset 结构体里的 encoding 属性的值。比如:

  • 如果 encoding 属性值为 INTSET_ENC_INT16,那么 contents 就是一个 int16_t 类型的数组,数组中每一个元素的类型都是 int16_t;

  • 如果 encoding 属性值为 INTSET_ENC_INT32,那么 contents 就是一个 int32_t 类型的数组,数组中每一个元素的类型都是 int32_t;

  • 如果 encoding 属性值为 INTSET_ENC_INT64,那么 contents 就是一个 int64_t 类型的数组,数组中每一个元素的类型都是 int64_t;

不同类型的 contents 数组,意味着数组的大小也会不同。

#整数集合的升级操作

整数集合会有一个升级规则,就是当我们将一个新元素加入到整数集合里面,如果新元素的类型(int32_t)比整数集合现有所有元素的类型(int16_t)都要长时,整数集合需要先进行升级,也就是按新元素的类型(int32_t)扩展 contents 数组的空间大小,然后才能将新元素加入到整数集合里,当然升级的过程中,也要维持整数集合的有序性。

整数集合升级的过程不会重新分配一个新类型的数组,而是在原本的数组上扩展空间,然后在将每个元素按间隔类型大小分割,如果 encoding 属性值为 INTSET_ENC_INT16,则每个元素的间隔就是 16 位。

举个例子,假设有一个整数集合里有 3 个类型为 int16_t 的元素。

img

现在,往这个整数集合中加入一个新元素 65535,这个新元素需要用 int32_t 类型来保存,所以整数集合要进行升级操作,首先需要为 contents 数组扩容,在原本空间的大小之上再扩容多 80 位(4x32-3x16=80),这样就能保存下 4 个类型为 int32_t 的元素

img

扩容完 contents 数组空间大小后,需要将之前的三个元素转换为 int32_t 类型,并将转换后的元素放置到正确的位上面,并且需要维持底层数组的有序性不变,整个转换过程如下:

img

整数集合升级有什么好处呢?

如果要让一个数组同时保存 int16_t、int32_t、int64_t 类型的元素,最简单做法就是直接使用 int64_t 类型的数组。不过这样的话,当如果元素都是 int16_t 类型的,就会造成内存浪费的情况。

整数集合升级就能避免这种情况,如果一直向整数集合添加 int16_t 类型的元素,那么整数集合的底层实现就一直是用 int16_t 类型的数组,只有在我们要将 int32_t 类型或 int64_t 类型的元素添加到集合时,才会对数组进行升级操作。

因此,整数集合升级的好处是节省内存资源

整数集合支持降级操作吗?

不支持降级操作,一旦对数组进行了升级,就会一直保持升级后的状态。比如前面的升级操作的例子,如果删除了 65535 元素,整数集合的数组还是 int32_t 类型的,并不会因此降级为 int16_t 类型

跳表

Redis 只有 Zset 对象的底层实现用到了跳表,跳表的优势是能支持平均 O(logN) 复杂度的节点查找。

zset 结构体里有两个数据结构:一个是跳表,一个是哈希表。这样的好处是既能进行高效的范围查询,也能进行高效单点查询。

typedef struct zset {
    dict *dict;
    zskiplist *zsl;
} zset;

Zset 对象在执行数据插入或是数据更新的过程中,会依次在跳表和哈希表中插入或更新相应的数据,从而保证了跳表和哈希表中记录的信息一致。

Zset 对象能支持范围查询(如 ZRANGEBYSCORE 操作),这是因为它的数据结构设计采用了跳表,而又能以常数复杂度获取元素权重(如 ZSCORE 操作),这是因为它同时采用了哈希表进行索引。

可能很多人会奇怪,为什么我开头说 Zset 对象的底层数据结构是「压缩列表」或者「跳表」,而没有说哈希表呢?

Zset 对象在使用跳表作为数据结构的时候,是使用由「哈希表+跳表」组成的 struct zset,但是我们讨论的时候,都会说跳表是 Zset 对象的底层数据结构,而不会提及哈希表,是因为 struct zset 中的哈希表只是用于以常数复杂度获取元素权重,大部分操作都是跳表实现的。

接下来,详细的说下跳表。

#跳表结构设计

链表在查找元素的时候,因为需要逐一查找,所以查询效率非常低,时间复杂度是O(N),于是就出现了跳表。跳表是在链表基础上改进过来的,实现了一种「多层」的有序链表,这样的好处是能快读定位数据。

那跳表长什么样呢?我这里举个例子,下图展示了一个层级为 3 的跳表。

img

图中头节点有 L0~L2 三个头指针,分别指向了不同层级的节点,然后每个层级的节点都通过指针连接起来:

  • L0 层级共有 5 个节点,分别是节点1、2、3、4、5;

  • L1 层级共有 3 个节点,分别是节点 2、3、5;

  • L2 层级只有 1 个节点,也就是节点 3 。

如果我们要在链表中查找节点 4 这个元素,只能从头开始遍历链表,需要查找 4 次,而使用了跳表后,只需要查找 2 次就能定位到节点 4,因为可以在头节点直接从 L2 层级跳到节点 3,然后再往前遍历找到节点 4。

可以看到,这个查找过程就是在多个层级上跳来跳去,最后定位到元素。当数据量很大时,跳表的查找复杂度就是 O(logN)。

那跳表节点是怎么实现多层级的呢?这就需要看「跳表节点」的数据结构了,如下:

typedef struct zskiplistNode {
    //Zset 对象的元素值
    sds ele;
    //元素权重值
    double score;
    //后向指针
    struct zskiplistNode *backward;
  
    //节点的level数组,保存每层上的前向指针和跨度
    struct zskiplistLevel {
        struct zskiplistNode *forward;
        unsigned long span;
    } level[];
} zskiplistNode;

Zset 对象要同时保存「元素」和「元素的权重」,对应到跳表节点结构里就是 sds 类型的 ele 变量和 double 类型的 score 变量。每个跳表节点都有一个后向指针(struct zskiplistNode *backward),指向前一个节点,目的是为了方便从跳表的尾节点开始访问节点,这样倒序查找时很方便。

跳表是一个带有层级关系的链表,而且每一层级可以包含多个节点,每一个节点通过指针连接起来,实现这一特性就是靠跳表节点结构体中的zskiplistLevel 结构体类型的 level 数组

level 数组中的每一个元素代表跳表的一层,也就是由 zskiplistLevel 结构体表示,比如 leve[0] 就表示第一层,leve[1] 就表示第二层。zskiplistLevel 结构体里定义了「指向下一个跳表节点的指针」和「跨度」,跨度时用来记录两个节点之间的距离。

比如,下面这张图,展示了各个节点的跨度。

img

第一眼看到跨度的时候,以为是遍历操作有关,实际上并没有任何关系,遍历操作只需要用前向指针(struct zskiplistNode *forward)就可以完成了。

跨度实际上是为了计算这个节点在跳表中的排位。具体怎么做的呢?因为跳表中的节点都是按序排列的,那么计算某个节点排位的时候,从头节点点到该结点的查询路径上,将沿途访问过的所有层的跨度累加起来,得到的结果就是目标节点在跳表中的排位。

举个例子,查找图中节点 3 在跳表中的排位,从头节点开始查找节点 3,查找的过程只经过了一个层(L2),并且层的跨度是 3,所以节点 3 在跳表中的排位是 3。

另外,图中的头节点其实也是 zskiplistNode 跳表节点,只不过头节点的后向指针、权重、元素值都没有用到,所以图中省略了这部分。

问题来了,由谁定义哪个跳表节点是头节点呢?这就介绍「跳表」结构体了,如下所示:

typedef struct zskiplist {
    struct zskiplistNode *header, *tail;
    unsigned long length;
    int level;
} zskiplist;

跳表结构里包含了:

  • 跳表的头尾节点,便于在O(1)时间复杂度内访问跳表的头节点和尾节点;

  • 跳表的长度,便于在O(1)时间复杂度获取跳表节点的数量;

  • 跳表的最大层数,便于在O(1)时间复杂度获取跳表中层高最大的那个节点的层数量;

#跳表节点查询过程

查找一个跳表节点的过程时,跳表会从头节点的最高层开始,逐一遍历每一层。在遍历某一层的跳表节点时,会用跳表节点中的 SDS 类型的元素和元素的权重来进行判断,共有两个判断条件:

  • 如果当前节点的权重「小于」要查找的权重时,跳表就会访问该层上的下一个节点。

  • 如果当前节点的权重「等于」要查找的权重时,并且当前节点的 SDS 类型数据「小于」要查找的数据时,跳表就会访问该层上的下一个节点。

如果上面两个条件都不满足,或者下一个节点为空时,跳表就会使用目前遍历到的节点的 level 数组里的下一层指针,然后沿着下一层指针继续查找,这就相当于跳到了下一层接着查找。

举个例子,下图有个 3 层级的跳表。

img

如果要查找「元素:abcd,权重:4」的节点,查找的过程是这样的:

  • 先从头节点的最高层开始,L2 指向了「元素:abc,权重:3」节点,这个节点的权重比要查找节点的小,所以要访问该层上的下一个节点;

  • 但是该层的下一个节点是空节点( leve[2]指向的是空节点),于是就会跳到「元素:abc,权重:3」节点的下一层去找,也就是 leve[1];

  • 「元素:abc,权重:3」节点的 leve[1] 的下一个指针指向了「元素:abcde,权重:4」的节点,然后将其和要查找的节点比较。虽然「元素:abcde,权重:4」的节点的权重和要查找的权重相同,但是当前节点的 SDS 类型数据「大于」要查找的数据,所以会继续跳到「元素:abc,权重:3」节点的下一层去找,也就是 leve[0];

  • 「元素:abc,权重:3」节点的 leve[0] 的下一个指针指向了「元素:abcd,权重:4」的节点,该节点正是要查找的节点,查询结束。

#跳表节点层数设置

跳表的相邻两层的节点数量的比例会影响跳表的查询性能。

举个例子,下图的跳表,第二层的节点数量只有 1 个,而第一层的节点数量有 6 个。

img

这时,如果想要查询节点 6,那基本就跟链表的查询复杂度一样,就需要在第一层的节点中依次顺序查找,复杂度就是 O(N) 了。所以,为了降低查询复杂度,我们就需要维持相邻层结点数间的关系。

跳表的相邻两层的节点数量最理想的比例是 2:1,查找复杂度可以降低到 O(logN)

下图的跳表就是,相邻两层的节点数量的比例是 2 : 1。

img

那怎样才能维持相邻两层的节点数量的比例为 2 : 1 呢?

如果采用新增节点或者删除节点时,来调整跳表节点以维持比例的方法的话,会带来额外的开销。

Redis 则采用一种巧妙的方法是,跳表在创建节点的时候,随机生成每个节点的层数,并没有严格维持相邻两层的节点数量比例为 2 : 1 的情况。

具体的做法是,跳表在创建节点时候,会生成范围为[0-1]的一个随机数,如果这个随机数小于 0.25(相当于概率 25%),那么层数就增加 1 层,然后继续生成下一个随机数,直到随机数的结果大于 0.25 结束,最终确定该节点的层数

这样的做法,相当于每增加一层的概率不超过 25%,层数越高,概率越低,层高最大限制是 64。

虽然我前面讲解跳表的时候,图中的跳表的「头节点」都是 3 层高,但是其实如果层高最大限制是 64,那么在创建跳表「头节点」的时候,就会直接创建 64 层高的头节点

如下代码,创建跳表时,头节点的 level 数组有 ZSKIPLIST_MAXLEVEL个元素(层),节点不存储任何 member 和 score 值,level 数组元素的 forward 都指向NULL, span值都为0。

/* Create a new skiplist. */
zskiplist *zslCreate(void) {
    int j;
    zskiplist *zsl;

    zsl = zmalloc(sizeof(*zsl));
    zsl->level = 1;
    zsl->length = 0;
    zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
    for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
        zsl->header->level[j].forward = NULL;
        zsl->header->level[j].span = 0;
    }
    zsl->header->backward = NULL;
    zsl->tail = NULL;
    return zsl;
}

其中,ZSKIPLIST_MAXLEVEL 定义的是最高的层数,Redis 7.0 定义为 32,Redis 5.0 定义为 64,Redis 3.0 定义为 32。

image-20231018171359669

#为什么用跳表而不用平衡树?

这里插一个常见的面试题:为什么 Zset 的实现用跳表而不用平衡树(如 AVL树、红黑树等)?

  • redis是读多写少的场景, 自平衡二叉树的自平衡操作在写多的情况下才占优势,在写少时跳表不需要自平衡 更新性能更好

  • 跳表实现起来更简单,自平衡二叉树不好实现。

跳表,会跳的链表真的非常diao_牛客网 (nowcoder.com)

1.是什么

跳表(SkipList,全称跳跃表) 一种可以进行二分查找的有序链表

跳表通过在原有有序链表基础上加上多级索引来实现快速查找。 解决了原本有序列表查询慢的问题

image-20201224175922421

如图。就是在上面维护那么多层的索引,首先在最高级索引上查找最后一个小于当前查找元素的位置,然后再跳到次高级索引继续查找,直到跳到最底层为止

跳表的相邻两层的节点数量最理想的比例是 2:1,查找复杂度可以降低到 O(logN)

2.查询操作

1.设置一个临时节点temp=head

2.从temp出发,如果当前节点key是target,则返回

如果key不相等,开始判断

如果右侧节点为null,证明只能向下 temp=temp.down

如果右侧不为null,且右侧key<target,说明这一层的理想区间还没找到,向右搜寻,temp=temp.right

如果右侧不为null,且右侧key>target,说明已经到达理想区间(当前key<target<右侧key),向下搜寻,temp=temp.down

3.重复第二步,直到查找结束。

img

3.数据结构定义

对于每个节点的设置,设置成SkipNode类,为了防止初学者将next向下还是向右搞混,直接设置right,down两个指针。

class SkipNode<T>
{
    int key;
    SkipNode right,down;//右下个方向的指针
    public SkipNode (int key) {
        this.key=key;
    }
}

key为节点值

跳表的结构和初始化也很重要,其主要参数和初始化方法为:

public class SkipList <T> {

    SkipNode headNode;//头节点,入口
    int highLevel;//当前跳表索引层数
    Random random;// 用于投掷硬币
    final int MAX_LEVEL = 32;//最大的层

    SkipList(){
        random=new Random();
        headNode=new SkipNode(Integer.MIN_VALUE);
        highLevel=0;
    }
    //其他方法

quicklist

在 Redis 3.0 之前,List 对象的底层数据结构是双向链表或者压缩列表。然后在 Redis 3.2 的时候,List 对象的底层改由 quicklist 数据结构实现。

其实 quicklist 就是「双向链表 + 压缩列表」组合,因为一个 quicklist 就是一个链表,而链表中的每个元素又是一个压缩列表。

在前面讲压缩列表的时候,我也提到了压缩列表的不足,虽然压缩列表是通过紧凑型的内存布局节省了内存开销,但是因为它的结构设计,如果保存的元素数量增加,或者元素变大了,压缩列表会有「连锁更新」的风险,一旦发生,会造成性能下降。

quicklist 解决办法,通过控制每个链表节点中的压缩列表的大小或者元素个数,来规避连锁更新的问题。因为压缩列表元素越少或越小,连锁更新带来的影响就越小,从而提供了更好的访问性能

quicklist 结构设计

quicklist 的结构体跟链表的结构体类似,都包含了表头和表尾,区别在于 quicklist 的节点是 quicklistNode。

typedef struct quicklist {
    //quicklist的链表头
    quicklistNode *head;      //quicklist的链表头
    //quicklist的链表尾
    quicklistNode *tail; 
    //所有压缩列表中的总元素个数
    unsigned long count;
    //quicklistNodes的个数
    unsigned long len;       
    ...
} quicklist;

接下来看看,quicklistNode 的结构定义:

typedef struct quicklistNode {
    //前一个quicklistNode
    struct quicklistNode *prev;     //前一个quicklistNode
    //下一个quicklistNode
    struct quicklistNode *next;     //后一个quicklistNode
    //quicklistNode指向的压缩列表
    unsigned char *zl;              
    //压缩列表的的字节大小
    unsigned int sz;                
    //压缩列表的元素个数
    unsigned int count : 16;        //ziplist中的元素个数 
    ....
} quicklistNode;

可以看到,quicklistNode 结构体里包含了前一个节点和下一个节点指针,这样每个 quicklistNode 形成了一个双向链表。但是链表节点的元素不再是单纯保存元素值,而是保存了一个压缩列表,所以 quicklistNode 结构体里有个指向压缩列表的指针 *zl。

我画了一张图,方便你理解 quicklist 数据结构。

img

在向 quicklist 添加一个元素的时候,不会像普通的链表那样,直接新建一个链表节点。而是会检查插入位置(比如当前已有的头/尾节点)的压缩列表是否能容纳该元素,如果能容纳就直接保存到 quicklistNode 结构里的压缩列表,如果不能容纳,才会新建一个新的 quicklistNode 结构。

quicklist 会控制 quicklistNode 结构里的压缩列表的大小或者元素个数,来规避潜在的连锁更新的风险,但是这并没有完全解决连锁更新的问题。

#listpack

quicklist 虽然通过控制 quicklistNode 结构里的压缩列表的大小或者元素个数,来减少连锁更新带来的性能影响,但是并没有完全解决连锁更新的问题。

因为 quicklistNode 还是用了压缩列表来保存元素,压缩列表连锁更新的问题,来源于它的结构设计,所以要想彻底解决这个问题,需要设计一个新的数据结构。

于是,Redis 在 5.0 新设计一个数据结构叫 listpack,目的是替代压缩列表,它最大特点是 listpack 中每个节点不再包含前一个节点的长度了,压缩列表每个节点正因为需要保存前一个节点的长度字段,就会有连锁更新的隐患。

我看了 Redis 的 Github,在最新 6.2 发行版本中,Redis Hash 对象、ZSet 对象的底层数据结构的压缩列表还未被替换成 listpack,而 Redis 的最新代码(还未发布版本)已经将所有用到压缩列表底层数据结构的 Redis 对象替换成 listpack 数据结构来实现,估计不久将来,Redis 就会发布一个将压缩列表为 listpack 的发行版本

#listpack 结构设计

listpack 采用了压缩列表的很多优秀的设计,比如还是用一块连续的内存空间来紧凑地保存数据,并且为了节省内存的开销,listpack 节点会采用不同的编码方式保存不同大小的数据。

我们先看看 listpack 结构:

img

listpack 头包含两个属性,分别记录了 listpack 总字节数和元素数量,然后 listpack 末尾也有个结尾标识。图中的 listpack entry 就是 listpack 的节点了。

每个 listpack 节点结构如下:

img

主要包含三个方面内容:

  • encoding,定义该元素的编码类型,会对不同长度的整数和字符串进行编码;

  • data,实际存放的数据;

  • len,encoding+data的总长度;

可以看到,listpack 没有压缩列表中记录前一个节点长度的字段了,listpack 只记录当前节点的长度,当我们向 listpack 加入一个新元素的时候,不会影响其他节点的长度字段的变化,从而避免了压缩列表的连锁更新问题

5.Redis线程模型

为什么单线程的 Redis 如何做到每秒数万 QPS ? (qq.com)

Redis的IO多路复用

redis6.0前用的单线程reactor模型

在基于 epoll 的编程中,和传统的函数调用思路不同的是,我们并不能主动调用某个 API 来处理。因为无法知道我们想要处理的事件啥时候发生。所以只好提前把想要处理的事件的回调处理函数注册到一个事件分发器上去。当事件发生的时候,由这个事件分发器调用回调函数进行处理。这类基于实现注册事件分发器的开发模式也叫 Reactor 模型

其实整个 Redis 的工作过程,就只需要理解清楚 main 函数中调用的 initServer 和 aeMain 这两个函数就足够了。

image-20231011163951739

image-20241123114052634

在 initServer 这个函数内,Redis 做了这么三件重要的事情。

  • 创建一个 epoll 对象

  • 对配置的监听端口进行 listen

  • 把 listen socket 让 epoll 给管理起来

r

在 aeMain 函数中,是一个无休止的循环,它是 Redis 中最重要的部分。在每一次的循环中,要做的事情可以总结为如下图。

image-20241123114105420

  • 通过 epoll_wait 发现 listen socket 以及其它连接上的可读、可写事件

  • 若发现 listen socket 上有新连接到达,则接收新连接,并追加到 epoll 中进行管理

  • 若发现其它 socket 上有命令请求到达,则读取和处理命令,把命令结果写到缓存中,加入写任务队列

  • 每一次进入 epoll_wait 前都调用 beforesleep 来将写任务队列中的数据实际进行发送

    (beforesleep用来在redis读完客户端命令并处理后的结果返回给客户端,通过write系统调用由内核把数据发生出去,如果一次发送不完,会注册一个写事件处理器。等到 epoll_wait 发现对应的 socket 可写的时候,再执行 write 写处理。)

    image-20241123114118967


image-20231011165824590

Redis的后台线程

Redis 单线程指的是「接收客户端请求->解析请求 ->进行数据读写等操作->发送数据给客户端」这个过程是由一个线程(主线程)来完成的,这也是我们常说 Redis 是单线程的原因。

但是,Redis 程序并不是单线程的,Redis 在启动的时候,是会启动后台线程(BIO)的:

  • Redis 在 2.6 版本,会启动 2 个后台线程,分别处理关闭文件、AOF 刷盘这两个任务;

  • Redis 在 4.0 版本之后,新增了一个新的后台线程,用来异步释放 Redis 内存,也就是 lazyfree 线程。例如执行 unlink key / flushdb async / flushall async 等命令,会把这些删除操作交给后台线程来执行,好处是不会导致 Redis 主线程卡顿。因此,当我们要删除一个大 key 的时候,不要使用 del 命令删除,因为 del 是在主线程处理的,这样会导致 Redis 主线程卡顿,因此我们应该使用 unlink 命令来异步删除大key。

之所以 Redis 为「关闭文件、AOF 刷盘、释放内存」这些任务创建单独的线程来处理,是因为这些任务的操作都是很耗时的,如果把这些任务都放在主线程来处理,那么 Redis 主线程就很容易发生阻塞,这样就无法处理后续的请求了。

后台线程相当于一个消费者,生产者把耗时任务丢到任务队列中,消费者(BIO)不停轮询这个队列,拿出任务就去执行对应的方法即可。

image-20241123114134656

关闭文件、AOF 刷盘、释放内存这三个任务都有各自的任务队列:

  • BIO_CLOSE_FILE,关闭文件任务队列:当队列有任务后,后台线程会调用 close(fd) ,将文件关闭;

  • BIO_AOF_FSYNC,AOF刷盘任务队列:当 AOF 日志配置成 everysec 选项后,主线程会把 AOF 写日志操作封装成一个任务,也放到队列中。当发现队列有任务后,后台线程会调用 fsync(fd),将 AOF 文件刷盘,

  • BIO_LAZY_FREE,lazy free 任务队列:当队列有任务后,后台线程会 free(obj) 释放对象 / free(dict) 删除数据库所有对象 / free(skiplist) 释放跳表对象

Redis 单线程模式

image-20241123114205306

图中的蓝色部分是一个事件循环,是由主线程负责的,可以看到网络 I/O 和命令处理都是单线程。 Redis 初始化的时候,会做下面这几件事情:

  • 首先,调用 epoll_create() 创建一个 epoll 对象和调用 socket() 创建一个服务端 socket

  • 然后,调用 bind() 绑定端口和调用 listen() 监听该 socket;

  • 然后,将调用 epoll_ctl() 将 listen socket 加入到 epoll,同时注册「连接事件」处理函数。

初始化完后,主线程就进入到一个事件循环函数,主要会做以下事情:

  • 首先,先调用处理发送队列函数,看是发送队列里是否有任务,如果有发送任务,则通过 write 函数将客户端发送缓存区里的数据发送出去,如果这一轮数据没有发送完,就会注册写事件处理函数,等待 epoll_wait 发现可写后再处理 。

  • 接着,调用 epoll_wait 函数等待事件的到来:

    • 如果是连接事件到来,则会调用连接事件处理函数,该函数会做这些事情:调用 accpet 获取已连接的 socket -> 调用 epoll_ctl 将已连接的 socket 加入到 epoll -> 注册「读事件」处理函数;

    • 如果是读事件到来,则会调用读事件处理函数,该函数会做这些事情:调用 read 获取客户端发送的数据 -> 解析命令 -> 处理命令 -> 将客户端对象添加到发送队列 -> 将执行结果写到发送缓存区等待发送;

    • 如果是写事件到来,则会调用写事件处理函数,该函数会做这些事情:通过 write 函数将客户端发送缓存区里的数据发送出去,如果这一轮数据没有发送完,就会继续注册写事件处理函数,等待 epoll_wait 发现可写后再处理 。

Redis 采用单线程为什么还这么快?

  • Redis 的大部分操作都在内存中完成,并且采用了高效的数据结构,因此 Redis 瓶颈可能是机器的内存或者网络带宽,而并非 CPU,既然 CPU 不是瓶颈,那么自然就采用单线程的解决方案了;

  • Redis 采用单线程模型可以避免了多线程之间的竞争,省去了多线程切换带来的时间和性能上的开销,而且也不会导致死锁问题。

  • Redis 采用了 I/O 多路复用机制处理大量的客户端 Socket 请求,IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听 Socket 和已连接 Socket。内核会一直监听这些 Socket 上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果

权衡利弊:

首先是Redis的性能瓶颈不在CPU

其次是使用了单线程后,可维护性高,多线程模型虽然在某些方面表现优异,但是它却引入了程序执行顺序的不确定性,带来了并发读写的一系列问题,增加了系统复杂度、同时可能存在线程切换、甚至加锁解锁、死锁造成的性能损耗

Redis 6.0 之后为什么引入了多线程

在 Redis 6.0 版本之后,采用了多个 I/O 线程来处理网络请求,这是因为随着网络硬件的性能提升,Redis 的性能瓶颈有时会出现在网络 I/O 的处理上。

所以为了提高网络 I/O 的并行度,Redis 6.0 对于网络 I/O 采用多线程来处理。但是对于命令的执行,Redis 仍然使用单线程来处理,*所以大家*不要误解 Redis 有多线程同时执行命令。

因此, Redis 6.0 版本之后,Redis 在启动的时候,默认情况下会额外创建 6 个线程这里的线程数不包括主线程):

  • Redis-server : Redis的主线程,主要负责执行命令;

  • bio_close_file、bio_aof_fsync、bio_lazy_free:三个后台线程,分别异步处理关闭文件任务、AOF fsync写盘、释放内存任务;

(AOF重写bgrewriteaof,RDB bgsave保存快照都是开的子进程,跟后台线程没关系)

  • io_thd_1、io_thd_2、io_thd_3:三个 I/O 线程,io-threads 默认是 4 ,所以会启动 3(4-1)个 I/O 多线程,用来分担 Redis 网络 I/O 的压力。

6.Redis持久化

Redis 如何实现数据不丢失?

Redis 的读写操作都是在内存中,所以 Redis 性能才会高,但是当 Redis 重启后,内存中的数据就会丢失,那为了保证内存中的数据不会丢失,Redis 实现了数据持久化的机制,这个机制会把数据存储到磁盘,这样在 Redis 重启就能够从磁盘中恢复原有的数据。

Redis 共有三种数据持久化的方式:

  • AOF 日志:每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里;

  • RDB 快照:将某一时刻的内存数据,以二进制的方式写入磁盘;

  • 混合持久化方式:Redis 4.0 新增的方式,集成了 AOF 和 RBD 的优点;

AOF

AOF 持久化是怎么实现的?

image-20241123114232671

#AOF 日志

试想一下,如果 Redis 每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里,然后重启 Redis 的时候,先去读取这个文件里的命令,并且执行它,这不就相当于恢复了缓存数据了吗?

image-20241123114246260

这种保存写操作命令到日志的持久化方式,就是 Redis 里的 AOF(*Append Only File*) 持久化功能,注意只会记录写操作命令,读操作命令是不会被记录的,因为没意义。

在 Redis 中 AOF 持久化功能默认是不开启的,需要我们修改 redis.conf 配置文件中的以下参数:

image-20241123114255897

AOF 日志文件其实就是普通的文本,我们可以通过 cat 命令查看里面的内容,不过里面的内容如果不知道一定的规则的话,可能会看不懂。

我这里以「set name xiaolin」命令作为例子,Redis 执行了这条命令后,记录在 AOF 日志里的内容如下图:

image-20241123114310197

我这里给大家解释下。

*3」表示当前命令有三个部分,每部分都是以「$+数字」开头,后面紧跟着具体的命令、键或值。然后,这里的「数字」表示这部分中的命令、键或值一共有多少字节。例如,「$3 set」表示这部分有 3 个字节,也就是「set」命令这个字符串的长度。

不知道大家注意到没有,Redis 是先执行写操作命令后,才将该命令记录到 AOF 日志里的,这么做其实有两个好处。

第一个好处,避免额外的检查开销。

因为如果先将写操作命令记录到 AOF 日志里,再执行该命令的话,如果当前的命令语法有问题,那么如果不进行命令语法检查,该错误的命令记录到 AOF 日志里后,Redis 在使用日志恢复数据时,就可能会出错。

而如果先执行写操作命令再记录日志的话,只有在该命令执行成功后,才将命令记录到 AOF 日志里,这样就不用额外的检查开销,保证记录在 AOF 日志里的命令都是可执行并且正确的。

第二个好处,不会阻塞当前写操作命令的执行,因为当写操作命令执行成功后,才会将命令记录到 AOF 日志。

当然,AOF 持久化功能也不是没有潜在风险。

第一个风险,执行写操作命令和记录日志是两个过程,那当 Redis 在还没来得及将命令写入到硬盘时,服务器发生宕机了,这个数据就会有丢失的风险

第二个风险,前面说道,由于写操作命令执行成功后才记录到 AOF 日志,所以不会阻塞当前写操作命令的执行,但是可能会给「下一个」命令带来阻塞风险

因为将命令写入到日志的这个操作也是在主进程完成的(执行命令也是在主进程),也就是说这两个操作是同步的。

image-20241123114321310

如果在将日志内容写入到硬盘时,服务器的硬盘的 I/O 压力太大,就会导致写硬盘的速度很慢,进而阻塞住了,也就会导致后续的命令无法执行。

认真分析一下,其实这两个风险都有一个共性,都跟「 AOF 日志写回硬盘的时机」有关。

#三种写回策略

Redis 写入 AOF 日志的过程,如下图:

image-20241123114335802

我先来具体说说:

  1. Redis 执行完写操作命令后,会将命令追加到 server.aof_buf 缓冲区;

  2. 然后通过 write() 系统调用,将 aof_buf 缓冲区的数据写入到 AOF 文件,此时数据并没有写入到硬盘,而是拷贝到了内核缓冲区 page cache,等待内核将数据写入硬盘;

  3. 具体内核缓冲区的数据什么时候写入到硬盘,由内核决定。

Redis 提供了 3 种写回硬盘的策略,控制的就是上面说的第三步的过程。

redis.conf 配置文件中的 appendfsync 配置项可以有以下 3 种参数可填:

  • Always,这个单词的意思是「总是」,所以它的意思是每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;

  • Everysec,这个单词的意思是「每秒」,所以它的意思是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;

  • No,意味着不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。

这 3 种写回策略都无法能完美解决「主进程阻塞」和「减少数据丢失」的问题,因为两个问题是对立的,偏向于一边的话,就会要牺牲另外一边,原因如下:

  • Always 策略的话,可以最大程度保证数据不丢失,但是由于它每执行一条写操作命令就同步将 AOF 内容写回硬盘,所以是不可避免会影响主进程的性能;

  • No 策略的话,是交由操作系统来决定何时将 AOF 日志内容写回硬盘,相比于 Always 策略性能较好,但是操作系统写回硬盘的时机是不可预知的,如果 AOF 日志内容没有写回硬盘,一旦服务器宕机,就会丢失不定数量的数据。

  • Everysec 策略的话,是折中的一种方式,避免了 Always 策略的性能开销,也比 No 策略更能避免数据丢失,当然如果上一秒的写操作命令日志没有写回到硬盘,发生了宕机,这一秒内的数据自然也会丢失。

大家根据自己的业务场景进行选择:

  • 如果要高性能,就选择 No 策略;

  • 如果要高可靠,就选择 Always 策略;

  • 如果允许数据丢失一点,但又想性能高,就选择 Everysec 策略。

我也把这 3 个写回策略的优缺点总结成了一张表格:

image-20241123114348582

大家知道这三种策略是怎么实现的吗?

深入到源码后,你就会发现这三种策略只是在控制 fsync() 函数的调用时机。

当应用程序向文件写入数据时,内核通常先将数据复制到内核缓冲区中,然后排入队列,然后由内核决定何时写入硬盘。

image-20241123114359082

如果想要应用程序向文件写入数据后,能立马将数据同步到硬盘,就可以调用 fsync() 函数,这样内核就会将内核缓冲区的数据直接写入到硬盘,等到硬盘写操作完成后,该函数才会返回。

  • Always 策略就是每次写入 AOF 文件数据后,就执行 fsync() 函数;

  • Everysec 策略就会创建一个异步任务来执行 fsync() 函数;

  • No 策略就是永不执行 fsync() 函数;

#AOF 重写机制

AOF 日志是一个文件,随着执行的写操作命令越来越多,文件的大小会越来越大。

如果当 AOF 日志文件过大就会带来性能问题,比如重启 Redis 后,需要读 AOF 文件的内容以恢复数据,如果文件过大,整个恢复的过程就会很慢。

所以,Redis 为了避免 AOF 文件越写越大,提供了 AOF 重写机制,当 AOF 文件的大小超过所设定的阈值后,Redis 就会启用 AOF 重写机制,来压缩 AOF 文件。

AOF 重写机制是在重写时,读取当前数据库中的所有键值对,然后将每一个键值对用一条命令记录到「新的 AOF 文件」,等到全部记录完后,就将新的 AOF 文件替换掉现有的 AOF 文件。

举个例子,在没有使用重写机制前,假设前后执行了「set name xiaolin」和「set name xiaolincoding」这两个命令的话,就会将这两个命令记录到 AOF 文件。

image-20241123114410716

但是在使用重写机制后,就会读取 name 最新的 value(键值对) ,然后用一条 「set name xiaolincoding」命令记录到新的 AOF 文件,之前的第一个命令就没有必要记录了,因为它属于「历史」命令,没有作用了。这样一来,一个键值对在重写日志中只用一条命令就行了。

重写工作完成后,就会将新的 AOF 文件覆盖现有的 AOF 文件,这就相当于压缩了 AOF 文件,使得 AOF 文件体积变小了。

然后,在通过 AOF 日志恢复数据时,只用执行这条命令,就可以直接完成这个键值对的写入了。

所以,重写机制的妙处在于,尽管某个键值对被多条写命令反复修改,最终也只需要根据这个「键值对」当前的最新状态,然后用一条命令去记录键值对,代替之前记录这个键值对的多条命令,这样就减少了 AOF 文件中的命令数量。最后在重写工作完成后,将新的 AOF 文件覆盖现有的 AOF 文件。

这里说一下为什么重写 AOF 的时候,不直接复用现有的 AOF 文件,而是先写到新的 AOF 文件再覆盖过去。

因为如果 AOF 重写过程中失败了,现有的 AOF 文件就会造成污染,可能无法用于恢复使用。

所以 AOF 重写过程,先重写到新的 AOF 文件,重写失败的话,就直接删除这个文件就好,不会对现有的 AOF 文件造成影响。

#AOF 后台重写

写入 AOF 日志的操作虽然是在主进程完成的,因为它写入的内容不多,所以一般不太影响命令的操作。

但是在触发 AOF 重写时,比如当 AOF 文件大于 64M 时,就会对 AOF 文件进行重写,这时是需要读取所有缓存的键值对数据,并为每个键值对生成一条命令,然后将其写入到新的 AOF 文件,重写完后,就把现在的 AOF 文件替换掉。

这个过程其实是很耗时的,所以重写的操作不能放在主进程里。

所以,Redis 的重写 AOF 过程是由后台子进程 bgrewriteaof 来完成的,这么做可以达到两个好处:

  • 子进程进行 AOF 重写期间,主进程可以继续处理命令请求,从而避免阻塞主进程;

  • 子进程带有主进程的数据副本(数据副本怎么产生的后面会说),这里使用子进程而不是线程,因为如果是使用线程,多线程之间会共享内存,那么在修改共享内存数据的时候,需要通过加锁来保证数据的安全,而这样就会降低性能。而使用子进程,创建子进程时,父子进程是共享内存数据的,不过这个共享的内存只能以只读的方式,而当父子进程任意一方修改了该共享内存,就会发生「写时复制」,于是父子进程就有了独立的数据副本,就不用加锁来保证数据安全。

子进程是怎么拥有主进程一样的数据副本的呢?

主进程在通过 fork 系统调用生成 bgrewriteaof 子进程时,操作系统会把主进程的「页表」复制一份给子进程,这个页表记录着虚拟地址和物理地址映射关系,而不会复制物理内存,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个。

image-20241123114424946

这样一来,子进程就共享了父进程的物理内存数据了,这样能够节约物理内存资源,页表对应的页表项的属性会标记该物理内存的权限为只读

不过,当父进程或者子进程在向这个内存发起写操作时,CPU 就会触发写保护中断,这个写保护中断是由于违反权限导致的,然后操作系统会在「写保护中断处理函数」里进行物理内存的复制,并重新设置其内存映射关系,将父子进程的内存读写权限设置为可读写,最后才会对内存进行写操作,这个过程被称为「写时复制(*Copy On Write*)」。

image-20241123114435456

写时复制顾名思义,在发生写操作的时候,操作系统才会去复制物理内存,这样是为了防止 fork 创建子进程时,由于物理内存数据的复制时间过长而导致父进程长时间阻塞的问题。

当然,操作系统复制父进程页表的时候,父进程也是阻塞中的,不过页表的大小相比实际的物理内存小很多,所以通常复制页表的过程是比较快的。

不过,如果父进程的内存数据非常大,那自然页表也会很大,这时父进程在通过 fork 创建子进程的时候,阻塞的时间也越久。

所以,有两个阶段会导致阻塞父进程:

  • 创建子进程的途中,由于要复制父进程的页表等数据结构,阻塞的时间跟页表的大小有关,页表越大,阻塞的时间也越长;

  • 创建完子进程后,如果子进程或者父进程修改了共享数据,就会发生写时复制,这期间会拷贝物理内存,如果内存越大,自然阻塞的时间也越长;

触发重写机制后,主进程就会创建重写 AOF 的子进程,此时父子进程共享物理内存,重写子进程只会对这个内存进行只读,重写 AOF 子进程会读取数据库里的所有数据,并逐一把内存数据的键值对转换成一条命令,再将命令记录到重写日志(新的 AOF 文件)。

但是子进程重写过程中,主进程依然可以正常处理命令。

如果此时主进程修改了已经存在 key-value,就会发生写时复制,注意这里只会复制主进程修改的物理内存数据,没修改物理内存还是与子进程共享的

所以如果这个阶段修改的是一个 bigkey,也就是数据量比较大的 key-value 的时候,这时复制的物理内存数据的过程就会比较耗时,有阻塞主进程的风险。

还有个问题,重写 AOF 日志过程中,如果主进程修改了已经存在 key-value,此时这个 key-value 数据在子进程的内存数据就跟主进程的内存数据不一致了,这时要怎么办呢?

为了解决这种数据不一致问题,Redis 设置了一个 AOF 重写缓冲区,这个缓冲区在创建 bgrewriteaof 子进程之后开始使用。

在重写 AOF 期间,当 Redis 执行完一个写命令之后,它会同时将这个写命令写入到 「AOF 缓冲区」和 「AOF 重写缓冲区」

image-20241123114453471

也就是说,在 bgrewriteaof 子进程执行 AOF 重写期间,主进程需要执行以下三个工作:

  • 执行客户端发来的命令;

  • 将执行后的写命令追加到 「AOF 缓冲区」;

  • 将执行后的写命令追加到 「AOF 重写缓冲区」;

当子进程完成 AOF 重写工作(扫描数据库中所有数据,逐一把内存数据的键值对转换成一条命令,再将命令记录到重写日志)后,会向主进程发送一条信号,信号是进程间通讯的一种方式,且是异步的。

主进程收到该信号后,会调用一个信号处理函数,该函数主要做以下工作:

  • 将 AOF 重写缓冲区中的所有内容追加到新的 AOF 的文件中,使得新旧两个 AOF 文件所保存的数据库状态一致;

  • 新的 AOF 的文件进行改名,覆盖现有的 AOF 文件。

信号函数执行完后,主进程就可以继续像往常一样处理命令了。

在整个 AOF 后台重写过程中,除了发生写时复制会对主进程造成阻塞,还有信号处理函数执行时也会对主进程造成阻塞,在其他时候,AOF 后台重写都不会阻塞主进程。

#总结

这次小林给大家介绍了 Redis 持久化技术中的 AOF 方法,这个方法是每执行一条写操作命令,就将该命令以追加的方式写入到 AOF 文件,然后在恢复时,以逐一执行命令的方式来进行数据恢复。

Redis 提供了三种将 AOF 日志写回硬盘的策略,分别是 Always、Everysec 和 No,这三种策略在可靠性上是从高到低,而在性能上则是从低到高。

随着执行的命令越多,AOF 文件的体积自然也会越来越大,为了避免日志文件过大, Redis 提供了 AOF 重写机制,它会直接扫描数据中所有的键值对数据,然后为每一个键值对生成一条写操作命令,接着将该命令写入到新的 AOF 文件,重写完成后,就替换掉现有的 AOF 日志。重写的过程是由后台子进程完成的,这样可以使得主进程可以继续正常处理命令。

用 AOF 日志的方式来恢复数据其实是很慢的,因为 Redis 执行命令由单线程负责的,而 AOF 日志恢复数据的方式是顺序执行日志里的每一条命令,如果 AOF 日志很大,这个「重放」的过程就会很慢了

RDB

bgsave,定时保存全量数据快照,保存快照时主线程修改的数据不被记录

RDB 快照是怎么实现的?

虽说 Redis 是内存数据库,但是它为数据的持久化提供了两个技术。

分别是「 AOF 日志和 RDB 快照」。

这两种技术都会用各用一个日志文件来记录信息,但是记录的内容是不同的。

  • AOF 文件的内容是操作命令;

  • RDB 文件的内容是二进制数据。

关于 AOF 持久化的原理我在上一篇已经介绍了,今天主要讲下 RDB 快照

所谓的快照,就是记录某一个瞬间东西,比如当我们给风景拍照时,那一个瞬间的画面和信息就记录到了一张照片。

所以,RDB 快照就是记录某一个瞬间的内存数据,记录的是实际数据,而 AOF 文件记录的是命令操作的日志,而不是实际的数据。

因此在 Redis 恢复数据时, RDB 恢复数据的效率会比 AOF 高些,因为直接将 RDB 文件读入内存就可以,不需要像 AOF 那样还需要额外执行操作命令的步骤才能恢复数据。

接下来,就来具体聊聊 RDB 快照 。

#快照怎么用?

要熟悉一个东西,先看看怎么用是比较好的方式。

Redis 提供了两个命令来生成 RDB 文件,分别是 savebgsave,他们的区别就在于是否在「主线程」里执行:

  • 执行了 save 命令,就会在主线程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主线程

  • 执行了 bgsave 命令,会创建一个子进程来生成 RDB 文件,这样可以避免主线程的阻塞

RDB 文件的加载工作是在服务器启动时自动执行的,Redis 并没有提供专门用于加载 RDB 文件的命令。

Redis 还可以通过配置文件的选项来实现每隔一段时间自动执行一次 bgsave 命令,默认会提供以下配置:

save 900 1
save 300 10
save 60 10000

别看选项名叫 save,实际上执行的是 bgsave 命令,也就是会创建子进程来生成 RDB 快照文件。

只要满足上面条件的任意一个,就会执行 bgsave,它们的意思分别是:

  • 900 秒之内,对数据库进行了至少 1 次修改;

  • 300 秒之内,对数据库进行了至少 10 次修改;

  • 60 秒之内,对数据库进行了至少 10000 次修改。

这里提一点,Redis 的快照是全量快照,也就是说每次执行快照,都是把内存中的「所有数据」都记录到磁盘中。

所以可以认为,执行快照是一个比较重的操作,如果频率太频繁,可能会对 Redis 性能产生影响。如果频率太低,服务器故障时,丢失的数据会更多。

通常可能设置至少 5 分钟才保存一次快照,这时如果 Redis 出现宕机等情况,则意味着最多可能丢失 5 分钟数据。

这就是 RDB 快照的缺点,在服务器发生故障时,丢失的数据会比 AOF 持久化的方式更多,因为 RDB 快照是全量快照的方式,因此执行的频率不能太频繁,否则会影响 Redis 性能,而 AOF 日志可以以秒级的方式记录操作命令,所以丢失的数据就相对更少。

#执行快照时,数据能被修改吗?

那问题来了,执行 bgsave 过程中,由于是交给子进程来构建 RDB 文件,主线程还是可以继续工作的,此时主线程可以修改数据吗?

如果不可以修改数据的话,那这样性能一下就降低了很多。如果可以修改数据,又是如何做到到呢?

直接说结论吧,执行 bgsave 过程中,Redis 依然可以继续处理操作命令的,也就是数据是能被修改的。

那具体如何做到到呢?关键的技术就在于写时复制技术(Copy-On-Write, COW)。

执行 bgsave 命令的时候,会通过 fork() 创建子进程,此时子进程和父进程是共享同一片内存数据的,因为创建子进程的时候,会复制父进程的页表,但是页表指向的物理内存还是一个。

图片

只有在发生修改内存数据的情况时,物理内存才会被复制一份。

图片

这样的目的是为了减少创建子进程时的性能损耗,从而加快创建子进程的速度,毕竟创建子进程的过程中,是会阻塞主线程的。

所以,创建 bgsave 子进程后,由于共享父进程的所有内存数据,于是就可以直接读取主线程(父进程)里的内存数据,并将数据写入到 RDB 文件。

当主线程(父进程)对这些共享的内存数据也都是只读操作,那么,主线程(父进程)和 bgsave 子进程相互不影响。

但是,如果主线程(父进程)要修改共享数据里的某一块数据(比如键值对 A)时,就会发生写时复制,于是这块数据的物理内存就会被复制一份(键值对 A',然后主线程在这个数据副本(键值对 A')进行修改操作。与此同时,bgsave 子进程可以继续把原来的数据(键值对 A)写入到 RDB 文件

就是这样,Redis 使用 bgsave 对当前内存中的所有数据做快照,这个操作是由 bgsave 子进程在后台完成的,执行时不会阻塞主线程,这就使得主线程同时可以修改数据。

细心的同学,肯定发现了,bgsave 快照过程中,如果主线程修改了共享数据,发生了写时复制后,RDB 快照保存的是原本的内存数据,而主线程刚修改的数据,是没办法在这一时间写入 RDB 文件的,只能交由下一次的 bgsave 快照。

所以 Redis 在使用 bgsave 快照过程中,如果主线程修改了内存数据,不管是否是共享的内存数据,RDB 快照都无法写入主线程刚修改的数据,因为此时主线程(父进程)的内存数据和子进程的内存数据已经分离了,子进程写入到 RDB 文件的内存数据只能是原本的内存数据。

如果系统恰好在 RDB 快照文件创建完毕后崩溃了,那么 Redis 将会丢失主线程在快照期间修改的数据。

另外,写时复制的时候会出现这么个极端的情况。

在 Redis 执行 RDB 持久化期间,刚 fork 时,主进程和子进程共享同一物理内存,但是途中主进程处理了写操作,修改了共享内存,于是当前被修改的数据的物理内存就会被复制一份。

那么极端情况下,如果所有的共享内存都被修改,则此时的内存占用是原先的 2 倍。

所以,针对写操作多的场景,我们要留意下快照过程中内存的变化,防止内存被占满了

混合式

RDB快照保存/AOF写盘的频率不好把握:

  • 如果频率太低,两次快照/fysnc间一旦服务器发生宕机,就可能会比较多的数据丢失;

  • 如果频率太高,频繁写入磁盘和创建子进程会带来额外的性能开销。

RDB与AOF的权衡:RDB恢复速度快,AOF丢失数据少

那有没有什么方法不仅有 RDB 恢复速度快的优点和,又有 AOF 丢失数据少的优点呢?

当然有,那就是将 RDB 和 AOF 合体使用,这个方法是在 Redis 4.0 提出的,该方法叫混合使用 AOF 日志和内存快照,也叫混合持久化。

如果想要开启混合持久化功能,可以在 Redis 配置文件将下面这个配置项设置成 yes:

aof-use-rdb-preamble yes

混合持久化工作在 AOF 日志重写过程

当开启了混合持久化时,在 AOF 重写日志时,fork 出来的重写子进程会先将与主线程共享的内存数据以 RDB 方式写入到 AOF 文件,然后主线程处理的操作命令会被记录在重写缓冲区里,重写缓冲区里的增量命令会以 AOF 方式写入到 AOF 文件,写入完成后通知主进程将新的含有 RDB 格式和 AOF 格式的 AOF 文件替换旧的的 AOF 文件。

也就是说,使用了混合持久化,AOF 文件的前半部分是 RDB 格式的全量数据,后半部分是 AOF 格式的增量数据

图片

这样的好处在于,重启 Redis 加载数据的时候,由于前半部分是 RDB 内容,这样加载的时候速度会很快

加载完 RDB 的内容后,才会加载后半部分的 AOF 内容,这里的内容是 Redis 后台子进程重写 AOF 期间,主线程处理的操作命令,可以使得数据更少的丢失

7.Redis 过期删除与内存淘汰

#Redis 使用的过期删除策略是什么?

Redis 是可以对 key 设置过期时间的,因此需要有相应的机制将已过期的键值对删除,而做这个工作的就是过期键值删除策略。

每当我们对一个 key 设置了过期时间时,Redis 会把该 key 带上过期时间存储到一个过期字典(expires dict)中,也就是说「过期字典」保存了数据库中所有 key 的过期时间。

过期字典是一个哈希表

当我们查询一个 key 时,Redis 首先检查该 key 是否存在于过期字典中:

  • 如果不在,则正常读取键值;

  • 如果存在,则会获取该 key 的过期时间,然后与当前系统时间进行比对,如果比系统时间大,那就没有过期,否则判定该 key 已过期。

Redis 使用的过期删除策略是「惰性删除+定期删除」这两种策略配和使用。

一个是查到时再判断是否要删除,一个是定时抽检删除其中过期的

什么是惰性删除策略?

惰性删除策略的做法是,不主动删除过期键,每次从数据库访问 key 时,都检测 key 是否过期,如果过期则删除该 key。

惰性删除的流程图如下:

img

惰性删除策略的优点

  • 因为每次访问时,才会检查 key 是否过期,所以此策略只会使用很少的系统资源,因此,惰性删除策略对 CPU 时间最友好

惰性删除策略的缺点

  • 如果一个 key 已经过期,而这个 key 又仍然保留在数据库中,那么只要这个过期 key 一直没有被访问,它所占用的内存就不会释放,造成了一定的内存空间浪费。所以,惰性删除策略对内存不友好

什么是定期删除策略?

定期删除策略的做法是,每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。

Redis 的定期删除的流程:

  1. 从过期字典中随机抽取 20 个 key;

  2. 检查这 20 个 key 是否过期,并删除已过期的 key;

  3. 如果本轮检查的已过期 key 的数量,超过 5 个(20/4),也就是「已过期 key 的数量」占比「随机抽取 key 的数量」大于 25%,则继续重复步骤 1;如果已过期的 key 比例小于 25%,则停止继续删除过期 key,然后等待下一轮再检查。

可以看到,定期删除是一个循环的流程。那 Redis 为了保证定期删除不会出现循环过度,导致线程卡死现象,为此增加了定期删除循环流程的时间上限,默认不会超过 25ms。

定期删除的流程如下:

img

定期删除策略的优点

  • 通过限制删除操作执行的时长和频率,来减少删除操作对 CPU 的影响,同时也能删除一部分过期的数据减少了过期键对空间的无效占用

定期删除策略的缺点

  • 难以确定删除操作执行的时长和频率。如果执行的太频繁,就会对 CPU 不友好;如果执行的太少,那又和惰性删除一样了,过期 key 占用的内存不会及时得到释放。

可以看到,惰性删除策略和定期删除策略都有各自的优点,所以 Redis 选择「惰性删除+定期删除」这两种策略配和使用,以求在合理使用 CPU 时间和避免内存浪费之间取得平衡。

内存淘汰策略

前面说的过期删除策略,是删除已过期的 key,而当 Redis 的运行内存已经超过 Redis 设置的最大内存之后,则会使用内存淘汰策略删除符合条件的 key,以此来保障 Redis 高效的运行。

#如何设置 Redis 最大运行内存?

在配置文件 redis.conf 中,可以通过参数 maxmemory <bytes> 来设定最大运行内存,只有在 Redis 的运行内存达到了我们设置的最大运行内存,才会触发内存淘汰策略。 不同位数的操作系统,maxmemory 的默认值是不同的:

  • 在 64 位操作系统中,maxmemory 的默认值是 0,表示没有内存大小限制,那么不管用户存放多少数据到 Redis 中,Redis 也不会对可用内存进行检查,直到 Redis 实例因内存不足而崩溃也无作为。

  • 在 32 位操作系统中,maxmemory 的默认值是 3G,因为 32 位的机器最大只支持 4GB 的内存,而系统本身就需要一定的内存资源来支持运行,所以 32 位操作系统限制最大 3 GB 的可用内存是非常合理的,这样可以避免因为内存不足而导致 Redis 实例崩溃。

#Redis 内存淘汰策略有哪些?

Redis 内存淘汰策略共有八种,这八种策略大体分为「不进行数据淘汰」和「进行数据淘汰」两类策略。

1、不进行数据淘汰的策略

noeviction(Redis3.0之后,默认的内存淘汰策略) :它表示当运行内存超过最大设置内存时,不淘汰任何数据,这时如果有新的数据写入,会报错通知禁止写入,不淘汰任何数据,但是如果没用数据写入的话,只是单纯的查询或者删除操作的话,还是可以正常工作。

2、进行数据淘汰的策略

针对「进行数据淘汰」这一类策略,又可以细分为「在设置了过期时间的数据中进行淘汰」和「在所有数据范围内进行淘汰」这两类策略。

在设置了过期时间的数据中进行淘汰:

  • volatile-random:随机淘汰设置了过期时间的任意键值;

  • volatile-ttl:优先淘汰更早过期的键值。

  • volatile-lru(Redis3.0 之前,默认的内存淘汰策略):淘汰所有设置了过期时间的键值中,最久未使用的键值;

  • volatile-lfu(Redis 4.0 后新增的内存淘汰策略):淘汰所有设置了过期时间的键值中,最少使用的键值;

在所有数据范围内进行淘汰:

  • allkeys-random:随机淘汰任意键值;

  • allkeys-lru:淘汰整个键值中最久未使用的键值;

  • allkeys-lfu(Redis 4.0 后新增的内存淘汰策略):淘汰整个键值中最少使用的键值。

如何查看当前 Redis 使用的内存淘汰策略?

可以使用 config get maxmemory-policy 命令,来查看当前 Redis 的内存淘汰策略,命令如下:

127.0.0.1:6379> config get maxmemory-policy
1) "maxmemory-policy"
2) "noeviction"

可以看出,当前 Redis 使用的是 noeviction 类型的内存淘汰策略,它是 Redis 3.0 之后默认使用的内存淘汰策略,表示当运行内存超过最大设置内存时,不淘汰任何数据,但新增操作会报错。

如何修改 Redis 内存淘汰策略?

设置内存淘汰策略有两种方法:

  • 方式一:通过“config set maxmemory-policy <策略>”命令设置。它的优点是设置之后立即生效,不需要重启 Redis 服务,缺点是重启 Redis 之后,设置就会失效。

  • 方式二:通过修改 Redis 配置文件修改,设置“maxmemory-policy <策略>”,它的优点是重启 Redis 服务后配置不会丢失,缺点是必须重启 Redis 服务,设置才能生效。

#LRU 算法和 LFU 算法有什么区别?

LFU 内存淘汰算法是 Redis 4.0 之后新增内存淘汰策略,那为什么要新增这个算法?那肯定是为了解决 LRU 算法的问题。

接下来,就看看这两个算法有什么区别?Redis 又是如何实现这两个算法的?

什么是 LRU 算法?

LRU 全称是 Least Recently Used 翻译为最近最少使用,会选择淘汰最近最少使用的数据。

传统 LRU 算法的实现是基于「链表」结构,链表中的元素按照操作顺序从前往后排列,最新操作的键会被移动到表头,当需要内存淘汰时,只需要删除链表尾部的元素即可,因为链表尾部的元素就代表最久未被使用的元素。

Redis 并没有使用这样的方式实现 LRU 算法,因为传统的 LRU 算法存在两个问题:

  • 需要用链表管理所有的缓存数据,这会带来额外的空间开销;

  • 当有数据被访问时,需要在链表上把该数据移动到头端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。

Redis 是如何实现 LRU 算法的?

Redis 实现的是一种近似 LRU 算法,目的是为了更好的节约内存,它的实现方式是在 Redis 的对象结构体中添加一个额外的字段,用于记录此数据的最后一次访问时间

当 Redis 进行内存淘汰时,会使用随机采样的方式来淘汰数据,它是随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个

Redis 实现的 LRU 算法的优点:

  • 不用为所有的数据维护一个大链表,节省了空间占用;

  • 不用在每次数据访问时都移动链表项,提升了缓存的性能;

但是 LRU 算法有一个问题,无法解决缓存污染问题,比如应用一次读取了大量的数据,而这些数据只会被读取这一次,那么这些数据会留存在 Redis 缓存中很长一段时间,造成缓存污染。

因此,在 Redis 4.0 之后引入了 LFU 算法来解决这个问题。

什么是 LFU 算法?

LFU 全称是 Least Frequently Used 翻译为最近最不常用,LFU 算法是根据数据访问次数来淘汰数据的,它的核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

所以, LFU 算法会记录每个数据的访问次数。当一个数据被再次访问时,就会增加该数据的访问次数。这样就解决了偶尔被访问一次之后,数据留存在缓存中很长一段时间的问题,相比于 LRU 算法也更合理一些。

Redis 是如何实现 LFU 算法的?

LFU 算法相比于 LRU 算法的实现,多记录了「数据的访问频次」的信息。Redis 对象的结构如下:

typedef struct redisObject {
    ...
      
    // 24 bits,用于记录对象的访问信息
    unsigned lru:24;  
    ...
} robj;

Redis 对象头中的 lru 字段,在 LRU 算法下和 LFU 算法下使用方式并不相同。

在 LRU 算法中,Redis 对象头的 24 bits 的 lru 字段是用来记录 key 的访问时间戳,因此在 LRU 模式下,Redis可以根据对象头中的 lru 字段记录的值,来比较最后一次 key 的访问时间长,从而淘汰最久未被使用的 key。

在 LFU 算法中,Redis对象头的 24 bits 的 lru 字段被分成两段来存储,高 16bit 存储 ldt(Last Decrement Time),低 8bit 存储 logc(Logistic Counter)。

img

  • ldt 是用来记录 key 的访问时间戳;

  • logc 是用来记录 key 的访问频次,它的值越小表示使用频率越低,越容易淘汰,每个新加入的 key 的logc 初始值为 5。

注意,logc 并不是单纯的访问次数,而是访问频次(访问频率),因为 logc 会随时间推移而衰减的

在每次 key 被访问时,会先对 logc 做一个衰减操作,衰减的值跟前后访问时间的差距有关系,如果上一次访问的时间与这一次访问的时间差距很大,那么衰减的值就越大,这样实现的 LFU 算法是根据访问频率来淘汰数据的,而不只是访问次数。访问频率需要考虑 key 的访问是多长时间段内发生的。key 的先前访问距离当前时间越长,那么这个 key 的访问频率相应地也就会降低,这样被淘汰的概率也会更大。

对 logc 做完衰减操作后,就开始对 logc 进行增加操作,增加操作并不是单纯的 + 1,而是根据概率增加,如果 logc 越大的 key,它的 logc 就越难再增加。

所以,Redis 在访问 key 时,对于 logc 是这样变化的:

  1. 先按照上次访问距离当前的时长,来对 logc 进行衰减;

  2. 然后,再按照一定概率增加 logc 的值

redis.conf 提供了两个配置项,用于调整 LFU 算法从而控制 logc 的增长和衰减:

  • lfu-decay-time 用于调整 logc 的衰减速度,它是一个以分钟为单位的数值,默认值为1,lfu-decay-time 值越大,衰减越慢;

  • lfu-log-factor 用于调整 logc 的增长速度,lfu-log-factor 值越大,logc 增长越慢。

#总结

Redis 使用的过期删除策略是「惰性删除+定期删除」,删除的对象是已过期的 key。

img

内存淘汰策略是解决内存过大的问题,当 Redis 的运行内存超过最大运行内存时,就会触发内存淘汰策略,Redis 4.0 之后共实现了 8 种内存淘汰策略,我也对这 8 种的策略进行分类,如下:

img

完!

8.缓存

什么是缓存雪崩、击穿、穿透?

用户的数据一般都是存储于数据库,数据库的数据是落在磁盘上的,磁盘的读写速度可以说是计算机里最慢的硬件了。

当用户的请求,都访问数据库的话,请求数量一上来,数据库很容易就奔溃的了,所以为了避免用户直接访问数据库,会用 Redis 作为缓存层。

因为 Redis 是内存数据库,我们可以将数据库的数据缓存在 Redis 里,相当于数据缓存在内存,内存的读写速度比硬盘快好几个数量级,这样大大提高了系统性能。

图片

引入了缓存层,就会有缓存异常的三个问题,分别是缓存雪崩、缓存击穿、缓存穿透

这三个问题也是面试中很常考察的问题,我们不光要清楚地知道它们是怎么发生,还需要知道如何解决它们。

话不多说,发车!

图片


#缓存雪崩

通常我们为了保证缓存中的数据与数据库中的数据一致性,会给 Redis 里的数据设置过期时间,当缓存数据过期后,用户访问的数据如果不在缓存里,业务系统需要重新生成缓存,因此就会访问数据库,并将数据更新到 Redis 里,这样后续请求都可以直接命中缓存。

图片

那么,当大量缓存数据在同一时间过期(失效)或者 Redis 故障宕机时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃,这就是缓存雪崩的问题。

图片

可以看到,发生缓存雪崩有两个原因:

  • 大量数据同时过期;

  • Redis 故障宕机;

不同的诱因,应对的策略也会不同。

#大量数据同时过期

针对大量数据同时过期而引发的缓存雪崩问题,常见的应对方法有下面这几种:

  • 均匀设置过期时间;

  • 互斥锁;

  • 双 key 策略;

  • 后台更新缓存;

1. 均匀设置过期时间

如果要给缓存数据设置过期时间,应该避免将大量的数据设置成同一个过期时间。我们可以在对缓存数据设置过期时间时,给这些数据的过期时间加上一个随机数,这样就保证数据不会在同一时间过期。

2. 互斥锁

当业务线程在处理用户请求时,如果发现访问的数据不在 Redis 里,就加个互斥锁,保证同一时间内只有一个请求来构建缓存(从数据库读取数据,再将数据更新到 Redis 里),当缓存构建完成后,再释放锁。未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。

实现互斥锁的时候,最好设置超时时间,不然第一个请求拿到了锁,然后这个请求发生了某种意外而一直阻塞,一直不释放锁,这时其他请求也一直拿不到锁,整个系统就会出现无响应的现象。

3. 后台更新缓存

业务线程不再负责更新缓存,缓存也不设置有效期,而是让缓存“永久有效”,并将更新缓存的工作交由后台线程定时更新

事实上,缓存数据不设置有效期,并不是意味着数据一直能在内存里,因为当系统内存紧张的时候,有些缓存数据会被“淘汰”,而在缓存被“淘汰”到下一次后台定时更新缓存的这段时间内,业务线程读取缓存失败就返回空值,业务的视角就以为是数据丢失了。

解决上面的问题的方式有两种。

第一种方式,后台线程不仅负责定时更新缓存,而且也负责频繁地检测缓存是否有效,检测到缓存失效了,原因可能是系统紧张而被淘汰的,于是就要马上从数据库读取数据,并更新到缓存。

这种方式的检测时间间隔不能太长,太长也导致用户获取的数据是一个空值而不是真正的数据,所以检测的间隔最好是毫秒级的,但是总归是有个间隔时间,用户体验一般。

第二种方式,在业务线程发现缓存数据失效后(缓存数据被淘汰),通过消息队列发送一条消息通知后台线程更新缓存,后台线程收到消息后,在更新缓存前可以判断缓存是否存在,存在就不执行更新缓存操作;不存在就读取数据库数据,并将数据加载到缓存。这种方式相比第一种方式缓存的更新会更及时,用户体验也比较好。

在业务刚上线的时候,我们最好提前把数据缓起来,而不是等待用户访问才来触发缓存构建,这就是所谓的缓存预热,后台更新缓存的机制刚好也适合干这个事情。

#Redis 故障宕机

针对 Redis 故障宕机而引发的缓存雪崩问题,常见的应对方法有下面这几种:

  • 服务熔断或请求限流机制;

  • 构建 Redis 缓存高可靠集群;

1. 服务熔断或请求限流机制

因为 Redis 故障宕机而导致缓存雪崩问题时,我们可以启动服务熔断机制,暂停业务应用对缓存服务的访问,直接返回错误,不用再继续访问数据库,从而降低对数据库的访问压力,保证数据库系统的正常运行,然后等到 Redis 恢复正常后,再允许业务应用访问缓存服务。

服务熔断机制是保护数据库的正常允许,但是暂停了业务应用访问缓存服系统,全部业务都无法正常工作

为了减少对业务的影响,我们可以启用请求限流机制,只将少部分请求发送到数据库进行处理,再多的请求就在入口直接拒绝服务,等到 Redis 恢复正常并把缓存预热完后,再解除请求限流的机制。

2. 构建 Redis 缓存高可靠集群

服务熔断或请求限流机制是缓存雪崩发生后的应对方案,我们最好通过主从节点的方式构建 Redis 缓存高可靠集群

如果 Redis 缓存的主节点故障宕机,从节点可以切换成为主节点,继续提供缓存服务,避免了由于 Redis 故障宕机而导致的缓存雪崩问题。


#缓存击穿

我们的业务通常会有几个数据会被频繁地访问,比如秒杀活动,这类被频地访问的数据被称为热点数据。

如果缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮,这就是缓存击穿的问题。

图片

可以发现缓存击穿跟缓存雪崩很相似,你可以认为缓存击穿是缓存雪崩的一个子集。

应对缓存击穿可以采取前面说到两种方案:

  • 互斥锁方案,保证同一时间只有一个业务线程更新缓存,未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。

  • 不给热点数据设置过期时间,由后台异步更新缓存,或者在热点数据准备要过期前,提前通知后台线程更新缓存以及重新设置过期时间;


#缓存穿透

当发生缓存雪崩或击穿时,数据库中还是保存了应用要访问的数据,一旦缓存恢复相对应的数据,就可以减轻数据库的压力,而缓存穿透就不一样了。

当用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。那么当有大量这样的请求到来时,数据库的压力骤增,这就是缓存穿透的问题。

图片

缓存穿透的发生一般有这两种情况:

  • 业务误操作,缓存中的数据和数据库中的数据都被误删除了,所以导致缓存和数据库中都没有数据;

  • 黑客恶意攻击,故意大量访问某些读取不存在数据的业务;

应对缓存穿透的方案,常见的方案有三种。

  • 第一种方案,非法请求的限制;

  • 第二种方案,缓存空值或者默认值;

  • 第三种方案,使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在;

第一种方案,非法请求的限制

当有大量恶意请求访问不存在的数据的时候,也会发生缓存穿透,因此在 API 入口处我们要判断求请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库。

第二种方案,缓存空值或者默认值

当我们线上业务发现缓存穿透的现象时,可以针对查询的数据,在缓存中设置一个空值或者默认值,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库。

第三种方案,使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在。

我们可以在写入数据库数据时,使用布隆过滤器做个标记,然后在用户请求到来时,业务线程确认缓存失效后,可以通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在。

即使发生了缓存穿透,大量请求只会查询 Redis 和布隆过滤器,而不会查询数据库,保证了数据库能正常运行,Redis 自身也是支持布隆过滤器的。

那问题来了,布隆过滤器是如何工作的呢?接下来,我介绍下。

布隆过滤器由「初始值都为 0 的位图数组」和「 N 个哈希函数」两部分组成。当我们在写入数据库数据时,在布隆过滤器里做个标记,这样下次查询数据是否在数据库时,只需要查询布隆过滤器,如果查询到数据没有被标记,说明不在数据库中。

布隆过滤器会通过 3 个操作完成标记:

  • 第一步,使用 N 个哈希函数分别对数据做哈希计算,得到 N 个哈希值;

  • 第二步,将第一步得到的 N 个哈希值对位图数组的长度取模,得到每个哈希值在位图数组的对应位置。

  • 第三步,将每个哈希值在位图数组的对应位置的值设置为 1;

举个例子,假设有一个位图数组长度为 8,哈希函数 3 个的布隆过滤器。

图片

在数据库写入数据 x 后,把数据 x 标记在布隆过滤器时,数据 x 会被 3 个哈希函数分别计算出 3 个哈希值,然后在对这 3 个哈希值对 8 取模,假设取模的结果为 1、4、6,然后把位图数组的第 1、4、6 位置的值设置为 1。当应用要查询数据 x 是否数据库时,通过布隆过滤器只要查到位图数组的第 1、4、6 位置的值是否全为 1,只要有一个为 0,就认为数据 x 不在数据库中

布隆过滤器由于是基于哈希函数实现查找的,高效查找的同时存在哈希冲突的可能性,比如数据 x 和数据 y 可能都落在第 1、4、6 位置,而事实上,可能数据库中并不存在数据 y,存在误判的情况。

所以,查询布隆过滤器说数据存在,并不一定证明数据库中存在这个数据,但是查询到数据不存在,数据库中一定就不存在这个数据


#总结

缓存异常会面临的三个问题:缓存雪崩、击穿和穿透。

其中,缓存雪崩和缓存击穿主要原因是数据不在缓存中,而导致大量请求访问了数据库,数据库压力骤增,容易引发一系列连锁反应,导致系统奔溃。不过,一旦数据被重新加载回缓存,应用又可以从缓存快速读取数据,不再继续访问数据库,数据库的压力也会瞬间降下来。因此,缓存雪崩和缓存击穿应对的方案比较类似。

而缓存穿透主要原因是数据既不在缓存也不在数据库中。因此,缓存穿透与缓存雪崩、击穿应对的方案不太一样。

我这里整理了表格,你可以从下面这张表格很好的知道缓存雪崩、击穿和穿透的区别以及应对方案。

图片

数据库和缓存如何保证一致性?

四种策略

1.先更新数据库,再更新缓存

2.先更新缓存,再更新数据库

无论是「先更新数据库,再更新缓存」,还是「先更新缓存,再更新数据库」,这两个方案都存在并发问题,当两个请求并发更新同一条数据的时候,可能会出现缓存和数据库中的数据不一致的现象

Cache Aside 策略,中文是叫旁路缓存策略

image-20230925154311913

读策略:查询缓存,如果未命中,读取数据库,回写缓存

写策略:有两种方案 1.先删缓存 2.先更新数据库

3.旁路缓存+先删缓存

image-20230925154543131

在读写并发时,仍会出现缓存和数据库数据不一致问题/

4.旁路缓存+先更新数据库,再更新缓存

image-20230925154637443

在读写并发时,仍会有数据不一致问题。 但这种情况理论上出现概率并不高

因为缓存的写入通常要远远快于数据库的写入,所以在实际中很难出现请求 B 已经更新了数据库并且删除了缓存,请求 A 才更新完缓存的情况。

因此,「先更新数据库 + 再删除缓存」的方案,是可以基本保证数据一致性的

确保万无一失,再给缓存加上过期时间,这样就算出现了不一致,过期时间也能实现最终一致,只不过会可能存在一定时间内的数据不一致。

以上四种方案都有问题:

1,2 ,3不能保证数据一致性,也不能保证原子性(比如先更新数据库,更新缓存时失败了怎么办,那就还会导致数据不一致)

4 能够基本保证数据一致性,加上过期时间又保证极端情况下的数据最终一致性(双保障),但是不能保证原子性(更新完数据库,删除缓存失败)

优化方案:

先更新数据库,再更新缓存

1,保障数据一致性: 第一种:可以加个分布式锁 第二种:加个过期时间,最终一致性(主打一个等到没人写了,读策略就能读出正确缓存了)

2.保障原子性:引入消息队列,利用重试机制保障第二步操作始终成功

ps:先更新缓存,再更新数据库也可以,不过不如先更新数据库,因为重试写缓存的消耗比重试写数据库的消耗低

旁路缓存+先删缓存

延迟双删保障一致性:

image-20230925160317946

为什么能保障读写场景下的数据一致性?

加了个睡眠时间,主要是为了确保写请求 A 在睡眠的时候,读请求 B 能够在这这一段时间完成「从数据库读取数据,再把缺失的缓存写入缓存」的操作,然后请求 A 睡眠完,再删除缓存。

所以,请求 A 的睡眠时间就需要大于请求 B 「从数据库读取数据 + 写入缓存」的时间。

但是,如何设置睡眠时间,要兼顾性能和一致性考虑,我们一般只能设置个相对能接受的时间,在极端情况下还是会数据不一致

旁路缓存+先更新数据库

这个本来就能保证一致性,不能保障的是原子性

如何保障两个操作都能执行成功?

1.mq重试机制,确保成功,如果超过最大重试次数,走人工或者回滚数据库库存(能否回滚?)?

2.订阅 MySQL binlog,再操作缓存

先更新数据库,再删缓存」的策略的第一步是更新数据库,那么更新数据库成功,就会产生一条变更日志,记录在 binlog 里。

于是我们就可以通过订阅 binlog 日志,拿到具体要操作的数据,然后再执行缓存删除,阿里巴巴开源的 Canal 中间件就是基于这个实现的。

Canal 模拟 MySQL 主从复制的交互协议,把自己伪装成一个 MySQL 的从节点,向 MySQL 主节点发送 dump 请求,MySQL 收到请求后,就会开始推送 Binlog 给 Canal,Canal 解析 Binlog 字节流之后,转换为便于读取的结构化数据,供下游程序订阅使用。

image-20230925160959754

靠异步操作缓存保障两个操作能都成功

思考

1.删除/更新 缓存?

删除一个数据,相比更新一个数据更加轻量级,出问题的概率更小。在实际业务中,缓存的数据可能不是直接来自数据库表,也许来自多张底层数据表的聚合。此时代价极大(但旁路缓存还要回写,实际上是把负载放在更新操作,还是查询操作?)

当更新缓存代价很大,而且更新操作需要快速响应时,建议采用删除缓存

要是更新代价/并发低,不需要快速响应,或者用户那块查询库存并发更高,更需要快速响应,使用更新

2.并发情况的数据不一致解决?

1.在采用更新缓存的方式时(不用旁路),直接分布式锁锁住,或者过期时间实现最终一致性。

2.在采用旁路(删除缓存)时,如果是先更新数据库,基本能保障。 如果先删除缓存,使用延迟双删

3.乐观锁+incr:场景下不需要保障更新的先后顺序: 比如回滚库存时,更新数据库可以用乐观锁保证并发安全,更新缓存可以直接incr,因为更新缓存的库存就算顺序颠倒了,最终也能一致,而写缓存速度很快,中间因为更新顺序颠倒导致的不一致时间极短可以接受。

3.非原子操作导致的数据不一致解决?

1.mq重试机制保障第二步操作成功

2.canal订阅mysql binlog

本质两个操作都是通过异步操作缓存保障第二步能够成功

9.redis集群

Redis 如何实现服务高可用?

要想设计一个高可用的 Redis 服务,一定要从 Redis 的多服务节点来考虑,比如 Redis 的主从复制、哨兵模式、切片集群。

主从复制

主从复制是 Redis 高可用服务的最基础的保证,实现方案就是将从前的一台 Redis 服务器,同步数据到多台从 Redis 服务器上,即一主多从的模式,且主从服务器之间采用的是「读写分离」的方式。

主服务器可以进行读写操作,当发生写操作时自动将写操作同步给从服务器,而从服务器一般是只读,并接受主服务器同步过来写操作命令,然后执行这条命令。

img

也就是说,所有的数据修改只在主服务器上进行,然后将最新的数据同步给从服务器,这样就使得主从服务器的数据是一致的。

注意,主从服务器之间的命令复制是异步进行的。

具体来说,在主从服务器命令传播阶段,主服务器收到新的写命令后,会发送给从服务器。但是,主服务器并不会等到从服务器实际执行完命令后,再把结果返回给客户端,而是主服务器自己在本地执行完命令后,就会向客户端返回结果了。如果从服务器还没有执行主服务器同步过来的命令,主从服务器间的数据就不一致了。

所以,无法实现强一致性保证(主从数据时时刻刻保持一致),数据不一致是难以避免的。

TIP

想更详细了解 Redis 主从复制的工作原理,可以详细看这篇:主从复制是怎么实现的?(opens new window)

哨兵模式

在使用 Redis 主从服务的时候,会有一个问题,就是当 Redis 的主从服务器出现故障宕机时,需要手动进行恢复。

为了解决这个问题,Redis 增加了哨兵模式(Redis Sentinel),因为哨兵模式做到了可以监控主从服务器,并且提供主从节点故障转移的功能。

img

TIP

想更详细了解 Redis 哨兵的工作原理,可以详细看这篇:哨兵是怎么实现的?(opens new window)

切片集群模式

当 Redis 缓存数据量大到一台服务器无法缓存时,就需要使用 Redis 切片集群(Redis Cluster )方案,它将数据分布在不同的服务器上,以此来降低系统对单主节点的依赖,从而提高 Redis 服务的读写性能。

Redis Cluster 方案采用哈希槽(Hash Slot),来处理数据和节点之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384 个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中,具体执行过程分为两大步:

  • 根据键值对的 key,按照 CRC16 算法 (opens new window)计算一个 16 bit 的值。

  • 再用 16bit 值对 16384 取模,得到 0~16383 范围内的模数,每个模数代表一个相应编号的哈希槽。

接下来的问题就是,这些哈希槽怎么被映射到具体的 Redis 节点上的呢?有两种方案:

  • 平均分配: 在使用 cluster create 命令创建 Redis 集群时,Redis 会自动把所有哈希槽平均分布到集群节点上。比如集群中有 9 个节点,则每个节点上槽的个数为 16384/9 个。

  • 手动分配: 可以使用 cluster meet 命令手动建立节点间的连接,组成集群,再使用 cluster addslots 命令,指定每个节点上的哈希槽个数。

为了方便你的理解,我通过一张图来解释数据、哈希槽,以及节点三者的映射分布关系。

img

上图中的切片集群一共有 2 个节点,假设有 4 个哈希槽(Slot 0~Slot 3)时,我们就可以通过命令手动分配哈希槽,比如节点 1 保存哈希槽 0 和 1,节点 2 保存哈希槽 2 和 3。

redis-cli -h 192.168.1.10 –p 6379 cluster addslots 0,1
redis-cli -h 192.168.1.11 –p 6379 cluster addslots 2,3

然后在集群运行的过程中,key1 和 key2 计算完 CRC16 值后,对哈希槽总个数 4 进行取模,再根据各自的模数结果,就可以被映射到哈希槽 1(对应节点1) 和 哈希槽 2(对应节点2)。

需要注意的是,在手动分配哈希槽时,需要把 16384 个槽都分配完,否则 Redis 集群无法正常工作。

#集群脑裂导致数据丢失怎么办?

什么是脑裂?

先来理解集群的脑裂现象,这就好比一个人有两个大脑,那么到底受谁控制呢?

那么在 Redis 中,集群脑裂产生数据丢失的现象是怎样的呢?

在 Redis 主从架构中,部署方式一般是「一主多从」,主节点提供写操作,从节点提供读操作。 如果主节点的网络突然发生了问题,它与所有的从节点都失联了,但是此时的主节点和客户端的网络是正常的,这个客户端并不知道 Redis 内部已经出现了问题,还在照样的向这个失联的主节点写数据(过程A),此时这些数据被旧主节点缓存到了缓冲区里,因为主从节点之间的网络问题,这些数据都是无法同步给从节点的。

这时,哨兵也发现主节点失联了,它就认为主节点挂了(但实际上主节点正常运行,只是网络出问题了),于是哨兵就会在「从节点」中选举出一个 leader 作为主节点,这时集群就有两个主节点了 —— 脑裂出现了

然后,网络突然好了,哨兵因为之前已经选举出一个新主节点了,它就会把旧主节点降级为从节点(A),然后从节点(A)会向新主节点请求数据同步,因为第一次同步是全量同步的方式,此时的从节点(A)会清空掉自己本地的数据,然后再做全量同步。所以,之前客户端在过程 A 写入的数据就会丢失了,也就是集群产生脑裂数据丢失的问题

总结一句话就是:由于网络问题,集群节点之间失去联系。主从数据不同步;重新平衡选举,产生两个主服务。等网络恢复,旧主节点会降级为从节点,再与新主节点进行同步复制的时候,由于会从节点会清空自己的缓冲区,所以导致之前客户端写入的数据丢失了。

解决方案

当主节点发现从节点下线或者通信超时的总数量小于阈值时,那么禁止主节点进行写数据,直接把错误返回给客户端。

在 Redis 的配置文件中有两个参数我们可以设置:

  • min-slaves-to-write x,主节点必须要有至少 x 个从节点连接,如果小于这个数,主节点会禁止写数据。

  • min-slaves-max-lag x,主从数据复制和同步的延迟不能超过 x 秒,如果超过,主节点会禁止写数据。

我们可以把 min-slaves-to-write 和 min-slaves-max-lag 这两个配置项搭配起来使用,分别给它们设置一定的阈值,假设为 N 和 T。

这两个配置项组合后的要求是,主库连接的从库中至少有 N 个从库,和主库进行数据复制时的 ACK 消息延迟不能超过 T 秒,否则,主库就不会再接收客户端的写请求了。

即使原主库是假故障,它在假故障期间也无法响应哨兵心跳,也不能和从库进行同步,自然也就无法和从库进行 ACK 确认了。这样一来,min-slaves-to-write 和 min-slaves-max-lag 的组合要求就无法得到满足,原主库就会被限制接收客户端写请求,客户端也就不能在原主库中写入新数据了

等到新主库上线时,就只有新主库能接收和处理客户端请求,此时,新写的数据会被直接写到新主库中。而原主库会被哨兵降为从库,即使它的数据被清空了,也不会有新数据丢失。

再来举个例子。

假设我们将 min-slaves-to-write 设置为 1,把 min-slaves-max-lag 设置为 12s,把哨兵的 down-after-milliseconds 设置为 10s,主库因为某些原因卡住了 15s,导致哨兵判断主库客观下线,开始进行主从切换。

同时,因为原主库卡住了 15s,没有一个从库能和原主库在 12s 内进行数据复制,原主库也无法接收客户端请求了。

这样一来,主从切换完成后,也只有新主库能接收请求,不会发生脑裂,也就不会发生数据丢失的问题了。

主从复制是怎么实现的?

大家好,我是小林哥。

我在前两篇已经给大家图解了 AOF 和 RDB,这两个持久化技术保证了即使在服务器重启的情况下也不会丢失数据(或少量损失)。

不过,由于数据都是存储在一台服务器上,如果出事就完犊子了,比如:

  • 如果服务器发生了宕机,由于数据恢复是需要点时间,那么这个期间是无法服务新的请求的;

  • 如果这台服务器的硬盘出现了故障,可能数据就都丢失了。

要避免这种单点故障,最好的办法是将数据备份到其他服务器上,让这些服务器也可以对外提供服务,这样即使有一台服务器出现了故障,其他服务器依然可以继续提供服务。

图片

多台服务器要保存同一份数据,这里问题就来了。

这些服务器之间的数据如何保持一致性呢?数据的读写操作是否每台服务器都可以处理?

Redis 提供了主从复制模式,来避免上述的问题。

这个模式可以保证多台服务器的数据一致性,且主从服务器之间采用的是「读写分离」的方式。

主服务器可以进行读写操作,当发生写操作时自动将写操作同步给从服务器,而从服务器一般是只读,并接受主服务器同步过来写操作命令,然后执行这条命令。

图片

也就是说,所有的数据修改只在主服务器上进行,然后将最新的数据同步给从服务器,这样就使得主从服务器的数据是一致的。

同步这两个字说的简单,但是这个同步过程并没有想象中那么简单,要考虑的事情不是一两个。

我们先来看看,主从服务器间的第一次同步是如何工作的?

#第一次同步

多台服务器之间要通过什么方式来确定谁是主服务器,或者谁是从服务器呢?

我们可以使用 replicaof(Redis 5.0 之前使用 slaveof)命令形成主服务器和从服务器的关系。

比如,现在有服务器 A 和 服务器 B,我们在服务器 B 上执行下面这条命令:

# 服务器 B 执行这条命令
replicaof <服务器 A 的 IP 地址> <服务器 A 的 Redis 端口号>

接着,服务器 B 就会变成服务器 A 的「从服务器」,然后与主服务器进行第一次同步。

主从服务器间的第一次同步的过程可分为三个阶段:

  • 第一阶段是建立链接、协商同步;

  • 第二阶段是主服务器同步数据给从服务器;

  • 第三阶段是主服务器发送新写操作命令给从服务器。

为了让你更清楚了解这三个阶段,我画了一张图。

图片

接下来,我在具体介绍每一个阶段都做了什么。

第一阶段:建立链接、协商同步

执行了 replicaof 命令后,从服务器就会给主服务器发送 psync 命令,表示要进行数据同步。

psync 命令包含两个参数,分别是主服务器的 runID复制进度 offset

  • runID,每个 Redis 服务器在启动时都会自动生产一个随机的 ID 来唯一标识自己。当从服务器和主服务器第一次同步时,因为不知道主服务器的 run ID,所以将其设置为 "?"。

  • offset,表示复制的进度,第一次同步时,其值为 -1。

主服务器收到 psync 命令后,会用 FULLRESYNC 作为响应命令返回给对方。

并且这个响应命令会带上两个参数:主服务器的 runID 和主服务器目前的复制进度 offset。从服务器收到响应后,会记录这两个值。

FULLRESYNC 响应命令的意图是采用全量复制的方式,也就是主服务器会把所有的数据都同步给从服务器。

所以,第一阶段的工作时为了全量复制做准备。

那具体怎么全量同步呀呢?我们可以往下看第二阶段。

第二阶段:主服务器同步数据给从服务器

接着,主服务器会执行 bgsave 命令来生成 RDB 文件,然后把文件发送给从服务器。

从服务器收到 RDB 文件后,会先清空当前的数据,然后载入 RDB 文件。

这里有一点要注意,主服务器生成 RDB 这个过程是不会阻塞主线程的,因为 bgsave 命令是产生了一个子进程来做生成 RDB 文件的工作,是异步工作的,这样 Redis 依然可以正常处理命令。

但是,这期间的写操作命令并没有记录到刚刚生成的 RDB 文件中,这时主从服务器间的数据就不一致了。

那么为了保证主从服务器的数据一致性,主服务器在下面这三个时间间隙中将收到的写操作命令,写入到 replication buffer 缓冲区里

  • 主服务器生成 RDB 文件期间;

  • 主服务器发送 RDB 文件给从服务器期间;

  • 「从服务器」加载 RDB 文件期间;

第三阶段:主服务器发送新写操作命令给从服务器

在主服务器生成的 RDB 文件发送完,从服务器收到 RDB 文件后,丢弃所有旧数据,将 RDB 数据载入到内存。完成 RDB 的载入后,会回复一个确认消息给主服务器。

接着,主服务器将 replication buffer 缓冲区里所记录的写操作命令发送给从服务器,从服务器执行来自主服务器 replication buffer 缓冲区里发来的命令,这时主从服务器的数据就一致了。

至此,主从服务器的第一次同步的工作就完成了。

#命令传播

主从服务器在完成第一次同步后,双方之间就会维护一个 TCP 连接。

图片

后续主服务器可以通过这个连接继续将写操作命令传播给从服务器,然后从服务器执行该命令,使得与主服务器的数据库状态相同。

而且这个连接是长连接的,目的是避免频繁的 TCP 连接和断开带来的性能开销。

上面的这个过程被称为基于长连接的命令传播,通过这种方式来保证第一次同步后的主从服务器的数据一致性。

#分摊主服务器的压力

在前面的分析中,我们可以知道主从服务器在第一次数据同步的过程中,主服务器会做两件耗时的操作:生成 RDB 文件和传输 RDB 文件。

主服务器是可以有多个从服务器的,如果从服务器数量非常多,而且都与主服务器进行全量同步的话,就会带来两个问题:

  • 由于是通过 bgsave 命令来生成 RDB 文件的,那么主服务器就会忙于使用 fork() 创建子进程,如果主服务器的内存数据非大,在执行 fork() 函数时是会阻塞主线程的,从而使得 Redis 无法正常处理请求;

  • 传输 RDB 文件会占用主服务器的网络带宽,会对主服务器响应命令请求产生影响。

这种情况就好像,刚创业的公司,由于人不多,所以员工都归老板一个人管,但是随着公司的发展,人员的扩充,老板慢慢就无法承担全部员工的管理工作了。

要解决这个问题,老板就需要设立经理职位,由经理管理多名普通员工,然后老板只需要管理经理就好。

Redis 也是一样的,从服务器可以有自己的从服务器,我们可以把拥有从服务器的从服务器当作经理角色,它不仅可以接收主服务器的同步数据,自己也可以同时作为主服务器的形式将数据同步给从服务器,组织形式如下图:

图片

通过这种方式,主服务器生成 RDB 和传输 RDB 的压力可以分摊到充当经理角色的从服务器

那具体怎么做到的呢?

其实很简单,我们在「从服务器」上执行下面这条命令,使其作为目标服务器的从服务器:

replicaof <目标服务器的IP> 6379

此时如果目标服务器本身也是「从服务器」,那么该目标服务器就会成为「经理」的角色,不仅可以接受主服务器同步的数据,也会把数据同步给自己旗下的从服务器,从而减轻主服务器的负担。

#增量复制

主从服务器在完成第一次同步后,就会基于长连接进行命令传播。

可是,网络总是不按套路出牌的嘛,说延迟就延迟,说断开就断开。

如果主从服务器间的网络连接断开了,那么就无法进行命令传播了,这时从服务器的数据就没办法和主服务器保持一致了,客户端就可能从「从服务器」读到旧的数据。

图片

那么问题来了,如果此时断开的网络,又恢复正常了,要怎么继续保证主从服务器的数据一致性呢?

在 Redis 2.8 之前,如果主从服务器在命令同步时出现了网络断开又恢复的情况,从服务器就会和主服务器重新进行一次全量复制,很明显这样的开销太大了,必须要改进一波。

所以,从 Redis 2.8 开始,网络断开又恢复后,从主从服务器会采用增量复制的方式继续同步,也就是只会把网络断开期间主服务器接收到的写操作命令,同步给从服务器。

网络恢复后的增量复制过程如下图:

图片

主要有三个步骤:

  • 从服务器在恢复网络后,会发送 psync 命令给主服务器,此时的 psync 命令里的 offset 参数不是 -1;

  • 主服务器收到该命令后,然后用 CONTINUE 响应命令告诉从服务器接下来采用增量复制的方式同步数据;

  • 然后主服务将主从服务器断线期间,所执行的写命令发送给从服务器,然后从服务器执行这些命令。

那么关键的问题来了,主服务器怎么知道要将哪些增量数据发送给从服务器呢?

答案藏在这两个东西里:

  • repl_backlog_buffer,是一个「环形」缓冲区,用于主从服务器断连后,从中找到差异的数据;

  • replication offset,标记上面那个缓冲区的同步进度,主从服务器都有各自的偏移量,主服务器使用 master_repl_offset 来记录自己「」到的位置,从服务器使用 slave_repl_offset 来记录自己「」到的位置。

那 repl_backlog_buffer 缓冲区是什么时候写入的呢?

在主服务器进行命令传播时,不仅会将写命令发送给从服务器,还会将写命令写入到 repl_backlog_buffer 缓冲区里,因此 这个缓冲区里会保存着最近传播的写命令。

网络断开后,当从服务器重新连上主服务器时,从服务器会通过 psync 命令将自己的复制偏移量 slave_repl_offset 发送给主服务器,主服务器根据自己的 master_repl_offset 和 slave_repl_offset 之间的差距,然后来决定对从服务器执行哪种同步操作:

  • 如果判断出从服务器要读取的数据还在 repl_backlog_buffer 缓冲区里,那么主服务器将采用增量同步的方式;

  • 相反,如果判断出从服务器要读取的数据已经不存在 repl_backlog_buffer 缓冲区里,那么主服务器将采用全量同步的方式。

当主服务器在 repl_backlog_buffer 中找到主从服务器差异(增量)的数据后,就会将增量的数据写入到 replication buffer 缓冲区,这个缓冲区我们前面也提到过,它是缓存将要传播给从服务器的命令。

图片

repl_backlog_buffer 缓行缓冲区的默认大小是 1M,并且由于它是一个环形缓冲区,所以当缓冲区写满后,主服务器继续写入的话,就会覆盖之前的数据。因此,当主服务器的写入速度远超于从服务器的读取速度,缓冲区的数据一下就会被覆盖。

那么在网络恢复时,如果从服务器想读的数据已经被覆盖了,主服务器就会采用全量同步,这个方式比增量同步的性能损耗要大很多。

因此,为了避免在网络恢复时,主服务器频繁地使用全量同步的方式,我们应该调整下 repl_backlog_buffer 缓冲区大小,尽可能的大一些,减少出现从服务器要读取的数据被覆盖的概率,从而使得主服务器采用增量同步的方式。

那 repl_backlog_buffer 缓冲区具体要调整到多大呢?

repl_backlog_buffer 最小的大小可以根据这面这个公式估算。

图片

我来解释下这个公式的意思:

  • second 为从服务器断线后重新连接上主服务器所需的平均 时间(以秒计算)。

  • write_size_per_second 则是主服务器平均每秒产生的写命令数据量大小。

举个例子,如果主服务器平均每秒产生 1 MB 的写命令,而从服务器断线之后平均要 5 秒才能重新连接主服务器。

那么 repl_backlog_buffer 大小就不能低于 5 MB,否则新写地命令就会覆盖旧数据了。

当然,为了应对一些突发的情况,可以将 repl_backlog_buffer 的大小设置为此基础上的 2 倍,也就是 10 MB。

关于 repl_backlog_buffer 大小修改的方法,只需要修改配置文件里下面这个参数项的值就可以。

repl-backlog-size 1mb

#总结

主从复制共有三种模式:全量复制、基于长连接的命令传播、增量复制

主从服务器第一次同步的时候,就是采用全量复制,此时主服务器会两个耗时的地方,分别是生成 RDB 文件和传输 RDB 文件。为了避免过多的从服务器和主服务器进行全量复制,可以把一部分从服务器升级为「经理角色」,让它也有自己的从服务器,通过这样可以分摊主服务器的压力。

第一次同步完成后,主从服务器都会维护着一个长连接,主服务器在接收到写操作命令后,就会通过这个连接将写命令传播给从服务器,来保证主从服务器的数据一致性。

如果遇到网络断开,增量复制就可以上场了,不过这个还跟 repl_backlog_size 这个大小有关系。

如果它配置的过小,主从服务器网络恢复时,可能发生「从服务器」想读的数据已经被覆盖了,那么这时就会导致主服务器采用全量复制的方式。所以为了避免这种情况的频繁发生,要调大这个参数的值,以降低主从服务器断开后全量同步的概率。

#面试题

#Redis主从节点时长连接还是短连接?

长连接

#怎么判断 Redis 某个节点是否正常工作?

Redis 判断节点是否正常工作,基本都是通过互相的 ping-pong 心态检测机制,如果有一半以上的节点去 ping 一个节点的时候没有 pong 回应,集群就会认为这个节点挂掉了,会断开与这个节点的连接。

Redis 主从节点发送的心态间隔是不一样的,而且作用也有一点区别:

  • Redis 主节点默认每隔 10 秒对从节点发送 ping 命令,判断从节点的存活性和连接状态,可通过参数repl-ping-slave-period控制发送频率。

  • Redis 从节点每隔 1 秒发送 replconf ack{offset} 命令,给主节点上报自身当前的复制偏移量,目的是为了:

    • 实时监测主从节点网络状态;

    • 上报自身复制偏移量, 检查复制数据是否丢失, 如果从节点数据丢失, 再从主节点的复制缓冲区中拉取丢失数据。

#主从复制架构中,过期key如何处理?

主节点处理了一个key或者通过淘汰算法淘汰了一个key,这个时间主节点模拟一条del命令发送给从节点,从节点收到该命令后,就进行删除key的操作。

#Redis 是同步复制还是异步复制?

Redis 主节点每次收到写命令之后,先写到内部的缓冲区,然后异步发送给从节点。

#主从复制中两个 Buffer(replication buffer 、repl backlog buffer)有什么区别?

replication buffer 、repl backlog buffer 区别如下:

  • 出现的阶段不一样:

    • repl backlog buffer 是在增量复制阶段出现,一个主节点只分配一个 repl backlog buffer

    • replication buffer 是在全量复制阶段和增量复制阶段都会出现,主节点会给每个新连接的从节点,分配一个 replication buffer

  • 这两个 Buffer 都有大小限制的,当缓冲区满了之后,发生的事情不一样:

    • 当 repl backlog buffer 满了,因为是环形结构,会直接覆盖起始位置数据;

    • 当 replication buffer 满了,会导致连接断开,删除缓存,从节点重新连接,重新开始全量复制

#如何应对主从数据不一致?

为什么会出现主从数据不一致?

主从数据不一致,就是指客户端从从节点中读取到的值和主节点中的最新值并不一致。

之所以会出现主从数据不一致的现象,是因为主从节点间的命令复制是异步进行的,所以无法实现强一致性保证(主从数据时时刻刻保持一致)。

具体来说,在主从节点命令传播阶段,主节点收到新的写命令后,会发送给从节点。但是,主节点并不会等到从节点实际执行完命令后,再把结果返回给客户端,而是主节点自己在本地执行完命令后,就会向客户端返回结果了。如果从节点还没有执行主节点同步过来的命令,主从节点间的数据就不一致了。

如何如何应对主从数据不一致?

第一种方法,尽量保证主从节点间的网络连接状况良好,避免主从节点在不同的机房。

第二种方法,可以开发一个外部程序来监控主从节点间的复制进度。具体做法:

  • Redis 的 INFO replication 命令可以查看主节点接收写命令的进度信息(master_repl_offset)和从节点复制写命令的进度信息(slave_repl_offset),所以,我们就可以开发一个监控程序,先用 INFO replication 命令查到主、从节点的进度,然后,我们用 master_repl_offset 减去 slave_repl_offset,这样就能得到从节点和主节点间的复制进度差值了。

  • 如果某个从节点的进度差值大于我们预设的阈值,我们可以让客户端不再和这个从节点连接进行数据读取,这样就可以减少读到不一致数据的情况。不过,为了避免出现客户端和所有从节点都不能连接的情况,我们需要把复制进度差值的阈值设置得大一些。

#主从切换如何减少数据丢失?

主从切换过程中,产生数据丢失的情况有两种:

  • 异步复制同步丢失

  • 集群产生脑裂数据丢失

我们不可能保证数据完全不丢失,只能做到使得尽量少的数据丢失。

#异步复制同步丢失

对于 Redis 主节点与从节点之间的数据复制,是异步复制的,当客户端发送写请求给主节点的时候,客户端会返回 ok,接着主节点将写请求异步同步给各个从节点,但是如果此时主节点还没来得及同步给从节点时发生了断电,那么主节点内存中的数据会丢失。

减少异步复制的数据丢失的方案

Redis 配置里有一个参数 min-slaves-max-lag,表示一旦所有的从节点数据复制和同步的延迟都超过了 min-slaves-max-lag 定义的值,那么主节点就会拒绝接收任何请求。

假设将 min-slaves-max-lag 配置为 10s 后,根据目前 master->slave 的复制速度,如果数据同步完成所需要时间超过10s,就会认为 master 未来宕机后损失的数据会很多,master 就拒绝写入新请求。这样就能将 master 和 slave 数据差控制在10s内,即使 master 宕机也只是这未复制的 10s 数据。

那么对于客户端,当客户端发现 master 不可写后,我们可以采取降级措施,将数据暂时写入本地缓存和磁盘中,在一段时间(等 master 恢复正常)后重新写入 master 来保证数据不丢失,也可以将数据写入 kafka 消息队列,等 master 恢复正常,再隔一段时间去消费 kafka 中的数据,让将数据重新写入 master 。

#集群产生脑裂数据丢失

先来理解集群的脑裂现象,这就好比一个人有两个大脑,那么到底受谁控制呢?

那么在 Redis 中,集群脑裂产生数据丢失的现象是怎样的呢?

在 Redis 主从架构中,部署方式一般是「一主多从」,主节点提供写操作,从节点提供读操作。

如果主节点的网络突然发生了问题,它与所有的从节点都失联了,但是此时的主节点和客户端的网络是正常的,这个客户端并不知道 Redis 内部已经出现了问题,还在照样的向这个失联的主节点写数据(过程A),此时这些数据被主节点缓存到了缓冲区里,因为主从节点之间的网络问题,这些数据都是无法同步给从节点的。

这时,哨兵也发现主节点失联了,它就认为主节点挂了(但实际上主节点正常运行,只是网络出问题了),于是哨兵就会在从节点中选举出一个 leeder 作为主节点,这时集群就有两个主节点了 —— 脑裂出现了

这时候网络突然好了,哨兵因为之前已经选举出一个新主节点了,它就会把旧主节点降级为从节点(A),然后从节点(A)会向新主节点请求数据同步,因为第一次同步是全量同步的方式,此时的从节点(A)会清空掉自己本地的数据,然后再做全量同步。所以,之前客户端在过程 A 写入的数据就会丢失了,也就是集群产生脑裂数据丢失的问题

总结一句话就是:由于网络问题,集群节点之间失去联系。主从数据不同步;重新平衡选举,产生两个主服务。等网络恢复,旧主节点会降级为从节点,再与新主节点进行同步复制的时候,由于会从节点会清空自己的缓冲区,所以导致之前客户端写入的数据丢失了。

减少脑裂的数据丢的方案

当主节点发现「从节点下线的数量太多」,或者「网络延迟太大」的时候,那么主节点会禁止写操作,直接把错误返回给客户端。

在 Redis 的配置文件中有两个参数我们可以设置:

  • min-slaves-to-write x,主节点必须要有至少 x 个从节点连接,如果小于这个数,主节点会禁止写数据。

  • min-slaves-max-lag x,主从数据复制和同步的延迟不能超过 x 秒,如果主从同步的延迟超过 x 秒,主节点会禁止写数据。

我们可以把 min-slaves-to-write 和 min-slaves-max-lag 这两个配置项搭配起来使用,分别给它们设置一定的阈值,假设为 N 和 T。

这两个配置项组合后的要求是,主节点连接的从节点中至少有 N 个从节点,「并且」主节点进行数据复制时的 ACK 消息延迟不能超过 T 秒,否则,主节点就不会再接收客户端的写请求了。

即使原主节点是假故障,它在假故障期间也无法响应哨兵心跳,也不能和从节点进行同步,自然也就无法和从节点进行 ACK 确认了。这样一来,min-slaves-to-write 和 min-slaves-max-lag 的组合要求就无法得到满足,原主节点就会被限制接收客户端写请求,客户端也就不能在原主节点中写入新数据了

等到新主节点上线时,就只有新主节点能接收和处理客户端请求,此时,新写的数据会被直接写到新主节点中。而原主节点会被哨兵降为从节点,即使它的数据被清空了,也不会有新数据丢失。我再来给你举个例子。

假设我们将 min-slaves-to-write 设置为 1,把 min-slaves-max-lag 设置为 12s,把哨兵的 down-after-milliseconds 设置为 10s,主节点因为某些原因卡住了 15s,导致哨兵判断主节点客观下线,开始进行主从切换。同时,因为原主节点卡住了 15s,没有一个从节点能和原主节点在 12s 内进行数据复制,原主节点也无法接收客户端请求了。这样一来,主从切换完成后,也只有新主节点能接收请求,不会发生脑裂,也就不会发生数据丢失的问题了。

#主从如何做到故障自动切换?

主节点挂了 ,从节点是无法自动升级为主节点的,这个过程需要人工处理,在此期间 Redis 无法对外提供写操作。

此时,Redis 哨兵机制就登场了,哨兵在发现主节点出现故障时,由哨兵自动完成故障发现和故障转移,并通知给应用方,从而实现高可用性。

为什么要有哨兵?

大家好,我是小林。

这次聊聊,Redis 的哨兵机制。

img

#为什么要有哨兵机制?

在 Redis 的主从架构中,由于主从模式是读写分离的,如果主节点(master)挂了,那么将没有主节点来服务客户端的写操作请求,也没有主节点给从节点(slave)进行数据同步了。

主节点挂了

这时如果要恢复服务的话,需要人工介入,选择一个「从节点」切换为「主节点」,然后让其他从节点指向新的主节点,同时还需要通知上游那些连接 Redis 主节点的客户端,将其配置中的主节点 IP 地址更新为「新主节点」的 IP 地址。

这样也不太“智能”了,要是有一个节点能监控「主节点」的状态,当发现主节点挂了 ,它自动将一个「从节点」切换为「主节点」的话,那么可以节省我们很多事情啊!

Redis 在 2.8 版本以后提供的哨兵(*Sentinel*)机制,它的作用是实现主从节点故障转移。它会监测主节点是否存活,如果发现主节点挂了,它就会选举一个从节点切换为主节点,并且把新主节点的相关信息通知给从节点和客户端。

#哨兵机制是如何工作的?

哨兵其实是一个运行在特殊模式下的 Redis 进程,所以它也是一个节点。从“哨兵”这个名字也可以看得出来,它相当于是“观察者节点”,观察的对象是主从节点。

当然,它不仅仅是观察那么简单,在它观察到有异常的状况下,会做出一些“动作”,来修复异常状态。

哨兵节点主要负责三件事情:监控、选主、通知

哨兵的职责

所以,我们重点要学习这三件事情:

  • 哨兵节点是如何监控节点的?又是如何判断主节点是否真的故障了?

  • 根据什么规则选择一个从节点切换为主节点?

  • 怎么把新主节点的相关信息通知给从节点和客户端呢?

#如何判断主节点真的故障了?

哨兵会每隔 1 秒给所有主从节点发送 PING 命令,当主从节点收到 PING 命令后,会发送一个响应命令给哨兵,这样就可以判断它们是否在正常运行。

哨兵监控主从节点

如果主节点或者从节点没有在规定的时间内响应哨兵的 PING 命令,哨兵就会将它们标记为「主观下线」。这个「规定的时间」是配置项 down-after-milliseconds 参数设定的,单位是毫秒。

主观下线?难道还有客观下线?

是的没错,客观下线只适用于主节点。

之所以针对「主节点」设计「主观下线」和「客观下线」两个状态,是因为有可能「主节点」其实并没有故障,可能只是因为主节点的系统压力比较大或者网络发送了拥塞,导致主节点没有在规定时间内响应哨兵的 PING 命令。

所以,为了减少误判的情况,哨兵在部署的时候不会只部署一个节点,而是用多个节点部署成哨兵集群最少需要三台机器来部署哨兵集群),通过多个哨兵节点一起判断,就可以就可以避免单个哨兵因为自身网络状况不好,而误判主节点下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。

具体是怎么判定主节点为「客观下线」的呢?

当一个哨兵判断主节点为「主观下线」后,就会向其他哨兵发起命令,其他哨兵收到这个命令后,就会根据自身和主节点的网络状况,做出赞成投票或者拒绝投票的响应。

img

当这个哨兵的赞同票数达到哨兵配置文件中的 quorum 配置项设定的值后,这时主节点就会被该哨兵标记为「客观下线」。

例如,现在有 3 个哨兵,quorum 配置的是 2,那么一个哨兵需要 2 张赞成票,就可以标记主节点为“客观下线”了。这 2 张赞成票包括哨兵自己的一张赞成票和另外两个哨兵的赞成票。

PS:quorum 的值一般设置为哨兵个数的二分之一加1,例如 3 个哨兵就设置 2。

哨兵判断完主节点客观下线后,哨兵就要开始在多个「从节点」中,选出一个从节点来做新主节点。

#由哪个哨兵进行主从故障转移?

前面说过,为了更加“客观”的判断主节点故障了,一般不会只由单个哨兵的检测结果来判断,而是多个哨兵一起判断,这样可以减少误判概率,所以哨兵是以哨兵集群的方式存在的

问题来了,由哨兵集群中的哪个节点进行主从故障转移呢?

所以这时候,还需要在哨兵集群中选出一个 leader,让 leader 来执行主从切换。

选举 leader 的过程其实是一个投票的过程,在投票开始前,肯定得有个「候选者」。

那谁来作为候选者呢?

哪个哨兵节点判断主节点为「客观下线」,这个哨兵节点就是候选者,所谓的候选者就是想当 Leader 的哨兵。

举个例子,假设有三个哨兵。当哨兵 B 先判断到主节点「主观下线后」,就会给其他实例发送 is-master-down-by-addr 命令。接着,其他哨兵会根据自己和主节点的网络连接情况,做出赞成投票或者拒绝投票的响应。

img

当哨兵 B 收到赞成票数达到哨兵配置文件中的 quorum 配置项设定的值后,就会将主节点标记为「客观下线」,此时的哨兵 B 就是一个Leader 候选者。

候选者如何选举成为 Leader?

候选者会向其他哨兵发送命令,表明希望成为 Leader 来执行主从切换,并让所有其他哨兵对它进行投票。

每个哨兵只有一次投票机会,如果用完后就不能参与投票了,可以投给自己或投给别人,但是只有候选者才能把票投给自己。

那么在投票过程中,任何一个「候选者」,要满足两个条件:

  • 第一,拿到半数以上的赞成票;

  • 第二,拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。

举个例子,假设哨兵节点有 3 个,quorum 设置为 2,那么任何一个想成为 Leader 的哨兵只要拿到 2 张赞成票,就可以选举成功了。如果没有满足条件,就需要重新进行选举。

这时候有的同学就会问了,如果某个时间点,刚好有两个哨兵节点判断到主节点为客观下线,那这时不就有两个候选者了?这时该如何决定谁是 Leader 呢?

每位候选者都会先给自己投一票,然后向其他哨兵发起投票请求。如果投票者先收到「候选者 A」的投票请求,就会先投票给它,如果投票者用完投票机会后,收到「候选者 B」的投票请求后,就会拒绝投票。这时,候选者 A 先满足了上面的那两个条件,所以「候选者 A」就会被选举为 Leader。

为什么哨兵节点至少要有 3 个?

如果哨兵集群中只有 2 个哨兵节点,此时如果一个哨兵想要成功成为 Leader,必须获得 2 票,而不是 1 票。

所以,如果哨兵集群中有个哨兵挂掉了,那么就只剩一个哨兵了,如果这个哨兵想要成为 Leader,这时票数就没办法达到 2 票,就无法成功成为 Leader,这时是无法进行主从节点切换的。

因此,通常我们至少会配置 3 个哨兵节点。这时,如果哨兵集群中有个哨兵挂掉了,那么还剩下两个个哨兵,如果这个哨兵想要成为 Leader,这时还是有机会达到 2 票的,所以还是可以选举成功的,不会导致无法进行主从节点切换。

当然,你要问,如果 3 个哨兵节点,挂了 2 个怎么办?这个时候得人为介入了,或者增加多一点哨兵节点。

再说一个问题,Redis 1 主 4 从,5 个哨兵 ,quorum 设置为 3,如果 2 个哨兵故障,当主节点宕机时,哨兵能否判断主节点“客观下线”?主从能否自动切换?

  • 哨兵集群可以判定主节点“客观下线”。哨兵集群还剩下 3 个哨兵,当一个哨兵判断主节点“主观下线”后,询问另外 2 个哨兵后,有可能能拿到 3 张赞同票,这时就达到了 quorum 的值,因此,哨兵集群可以判定主节点为“客观下线”。

  • 哨兵集群可以完成主从切换。当有个哨兵标记主节点为「客观下线」后,就会进行选举 Leader 的过程,因为此时哨兵集群还剩下 3 个哨兵,那么还是可以拿到半数以上(5/2+1=3)的票,而且也达到了 quorum 值,满足了选举 Leader 的两个条件, 所以就能选举成功,因此哨兵集群可以完成主从切换。

如果 quorum 设置为 2 ,并且如果有 3 个哨兵故障的话。此时哨兵集群还是可以判定主节点为“客观下线”,但是哨兵不能完成主从切换了,大家可以自己推演下。

如果 quorum 设置为 3,并且如果有 3 个哨兵故障的话,哨兵集群即不能判定主节点为“客观下线”,也不能完成主从切换了。

可以看到,quorum 为 2 的时候,并且如果有 3 个哨兵故障的话,虽然可以判定主节点为“客观下线”,但是不能完成主从切换,这样感觉「判定主节点为客观下线」这件事情白做了一样,既然这样,还不如不要做,quorum 为 3 的时候,就可以避免这种无用功。

所以,quorum 的值建议设置为哨兵个数的二分之一加1,例如 3 个哨兵就设置 2,5 个哨兵设置为 3,而且哨兵节点的数量应该是奇数

#主从故障转移的过程是怎样的?

在哨兵集群中通过投票的方式,选举出了哨兵 leader 后,就可以进行主从故障转移的过程了,如下图:

img

主从故障转移操作包含以下四个步骤:

  • 第一步:在已下线主节点(旧主节点)属下的所有「从节点」里面,挑选出一个从节点,并将其转换为主节点。

  • 第二步:让已下线主节点属下的所有「从节点」修改复制目标,修改为复制「新主节点」;

  • 第三步:将新主节点的 IP 地址和信息,通过「发布者/订阅者机制」通知给客户端;

  • 第四步:继续监视旧主节点,当这个旧主节点重新上线时,将它设置为新主节点的从节点;

#步骤一:选出新主节点

故障转移操作第一步要做的就是在已下线主节点属下的所有「从节点」中,挑选出一个状态良好、数据完整的从节点,然后向这个「从节点」发送 SLAVEOF no one 命令,将这个「从节点」转换为「主节点」。

那么多「从节点」,到底选择哪个从节点作为新主节点的?

随机的方式好吗?随机的方式,实现起来很简单,但是如果选到一个网络状态不好的从节点作为新主节点,那么可能在将来不久又要做一次主从故障迁移。

所以,我们首先要把网络状态不好的从节点给过滤掉。首先把已经下线的从节点过滤掉,然后把以往网络连接状态不好的从节点也给过滤掉。

怎么判断从节点之前的网络连接状态不好呢?

Redis 有个叫 down-after-milliseconds * 10 配置项,其down-after-milliseconds 是主从节点断连的最大连接超时时间。如果在 down-after-milliseconds 毫秒内,主从节点都没有通过网络联系上,我们就可以认为主从节点断连了。如果发生断连的次数超过了 10 次,就说明这个从节点的网络状况不好,不适合作为新主节点。

至此,我们就把网络状态不好的从节点过滤掉了,接下来要对所有从节点进行三轮考察:优先级、复制进度、ID 号。在进行每一轮考察的时候,哪个从节点优先胜出,就选择其作为新主节点。

  • 第一轮考察:哨兵首先会根据从节点的优先级来进行排序,优先级越小排名越靠前,

  • 第二轮考察:如果优先级相同,则查看复制的下标,哪个从「主节点」接收的复制数据多,哪个就靠前。

  • 第三轮考察:如果优先级和下标都相同,就选择从节点 ID 较小的那个。

第一轮考察:优先级最高的从节点胜出

Redis 有个叫 slave-priority 配置项,可以给从节点设置优先级。

每一台从节点的服务器配置不一定是相同的,我们可以根据服务器性能配置来设置从节点的优先级。

比如,如果 「 A 从节点」的物理内存是所有从节点中最大的, 那么我们可以把「 A 从节点」的优先级设置成最高。这样当哨兵进行第一轮考虑的时候,优先级最高的 A 从节点就会优先胜出,于是就会成为新主节点。

#第二轮考察:复制进度最靠前的从节点胜出

如果在第一轮考察中,发现优先级最高的从节点有两个,那么就会进行第二轮考察,比较两个从节点哪个复制进度。

什么是复制进度?主从架构中,主节点会将写操作同步给从节点,在这个过程中,主节点会用 master_repl_offset 记录当前的最新写操作在 repl_backlog_buffer 中的位置(如下图中的「主服务器已经写入的数据」的位置),而从节点会用 slave_repl_offset 这个值记录当前的复制进度(如下图中的「从服务器要读的位置」的位置)。

img

如果某个从节点的 slave_repl_offset 最接近 master_repl_offset,说明它的复制进度是最靠前的,于是就可以将它选为新主节点。

#第三轮考察:ID 号小的从节点胜出

如果在第二轮考察中,发现有两个从节点优先级和复制进度都是一样的,那么就会进行第三轮考察,比较两个从节点的 ID 号,ID 号小的从节点胜出。

什么是 ID 号?每个从节点都有一个编号,这个编号就是 ID 号,是用来唯一标识从节点的。

到这里,选主的事情终于结束了。简单给大家总结下:

img

在选举出从节点后,哨兵 leader 向被选中的从节点发送 SLAVEOF no one 命令,让这个从节点解除从节点的身份,将其变为新主节点。

如下图,哨兵 leader 向被选中的从节点 server2 发送 SLAVEOF no one 命令,将该从节点升级为新主节点。

img

在发送 SLAVEOF no one 命令之后,哨兵 leader 会以每秒一次的频率向被升级的从节点发送 INFO 命令(没进行故障转移之前,INFO 命令的频率是每十秒一次),并观察命令回复中的角色信息,当被升级节点的角色信息从原来的 slave 变为 master 时,哨兵 leader 就知道被选中的从节点已经顺利升级为主节点了。

如下图,选中的从节点 server2 升级成了新主节点:

img

#步骤二:将从节点指向新主节点

当新主节点出现之后,哨兵 leader 下一步要做的就是,让已下线主节点属下的所有「从节点」指向「新主节点」,这一动作可以通过向「从节点」发送 SLAVEOF 命令来实现。

如下图,哨兵 leader 向所有从节点(server3和server4)发送 SLAVEOF ,让它们成为新主节点的从节点。

img

所有从节点指向新主节点后的拓扑图如下:

img

#步骤三:通知客户的主节点已更换

经过前面一系列的操作后,哨兵集群终于完成主从切换的工作,那么新主节点的信息要如何通知给客户端呢?

这主要通过 Redis 的发布者/订阅者机制来实现的。每个哨兵节点提供发布者/订阅者机制,客户端可以从哨兵订阅消息。

哨兵提供的消息订阅频道有很多,不同频道包含了主从节点切换过程中的不同关键事件,几个常见的事件如下:

img

客户端和哨兵建立连接后,客户端会订阅哨兵提供的频道。主从切换完成后,哨兵就会向 +switch-master 频道发布新主节点的 IP 地址和端口的消息,这个时候客户端就可以收到这条信息,然后用这里面的新主节点的 IP 地址和端口进行通信了

通过发布者/订阅者机制机制,有了这些事件通知,客户端不仅可以在主从切换后得到新主节点的连接信息,还可以监控到主从节点切换过程中发生的各个重要事件。这样,客户端就可以知道主从切换进行到哪一步了,有助于了解切换进度。

#步骤四:将旧主节点变为从节点

故障转移操作最后要做的是,继续监视旧主节点,当旧主节点重新上线时,哨兵集群就会向它发送 SLAVEOF 命令,让它成为新主节点的从节点,如下图:

img

至此,整个主从节点的故障转移的工作结束。

#哨兵集群是如何组成的?

前面提到了 Redis 的发布者/订阅者机制,那就不得不提一下哨兵集群的组成方式,因为它也用到了这个技术。

在我第一次搭建哨兵集群的时候,当时觉得很诧异。因为在配置哨兵的信息时,竟然只需要填下面这几个参数,设置主节点名字、主节点的 IP 地址和端口号以及 quorum 值。

sentinel monitor <master-name> <ip> <redis-port> <quorum> 

不需要填其他哨兵节点的信息,我就好奇它们是如何感知对方的,又是如何组成哨兵集群的?

后面才了解到,哨兵节点之间是通过 Redis 的发布者/订阅者机制来相互发现的

在主从集群中,主节点上有一个名为__sentinel__:hello的频道,不同哨兵就是通过它来相互发现,实现互相通信的。

在下图中,哨兵 A 把自己的 IP 地址和端口的信息发布到__sentinel__:hello 频道上,哨兵 B 和 C 订阅了该频道。那么此时,哨兵 B 和 C 就可以从这个频道直接获取哨兵 A 的 IP 地址和端口号。然后,哨兵 B、C 可以和哨兵 A 建立网络连接。

img

通过这个方式,哨兵 B 和 C 也可以建立网络连接,这样一来,哨兵集群就形成了。

哨兵集群会对「从节点」的运行状态进行监控,那哨兵集群如何知道「从节点」的信息?

主节点知道所有「从节点」的信息,所以哨兵会每 10 秒一次的频率向主节点发送 INFO 命令来获取所有「从节点」的信息。

如下图所示,哨兵 B 给主节点发送 INFO 命令,主节点接受到这个命令后,就会把从节点列表返回给哨兵。接着,哨兵就可以根据从节点列表中的连接信息,和每个从节点建立连接,并在这个连接上持续地对从节点进行监控。哨兵 A 和 C 可以通过相同的方法和从节点建立连接。

img

正式通过 Redis 的发布者/订阅者机制,哨兵之间可以相互感知,然后组成集群,同时,哨兵又通过 INFO 命令,在主节点里获得了所有从节点连接信息,于是就能和从节点建立连接,并进行监控了。

#总结

Redis 在 2.8 版本以后提供的哨兵(*Sentinel*)机制,它的作用是实现主从节点故障转移。它会监测主节点是否存活,如果发现主节点挂了,它就会选举一个从节点切换为主节点,并且把新主节点的相关信息通知给从节点和客户端。

哨兵一般是以集群的方式部署,至少需要 3 个哨兵节点,哨兵集群主要负责三件事情:监控、选主、通知

哨兵节点通过 Redis 的发布者/订阅者机制,哨兵之间可以相互感知,相互连接,然后组成哨兵集群,同时哨兵又通过 INFO 命令,在主节点里获得了所有从节点连接信息,于是就能和从节点建立连接,并进行监控了。

1、第一轮投票:判断主节点下线

当哨兵集群中的某个哨兵判定主节点下线(主观下线)后,就会向其他哨兵发起命令,其他哨兵收到这个命令后,就会根据自身和主节点的网络状况,做出赞成投票或者拒绝投票的响应。

当这个哨兵的赞同票数达到哨兵配置文件中的 quorum 配置项设定的值后,这时主节点就会被该哨兵标记为「客观下线」。

2、第二轮投票:选出哨兵leader

某个哨兵判定主节点客观下线后,该哨兵就会发起投票,告诉其他哨兵,它想成为 leader,想成为 leader 的哨兵节点,要满足两个条件:

  • 第一,拿到半数以上的赞成票;

  • 第二,拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。

3、由哨兵 leader 进行主从故障转移

选举出了哨兵 leader 后,就可以进行主从故障转移的过程了。该操作包含以下四个步骤:

  • 第一步:在已下线主节点(旧主节点)属下的所有「从节点」里面,挑选出一个从节点,并将其转换为主节点,选择的规则:

    • 过滤掉已经离线的从节点;

    • 过滤掉历史网络连接状态不好的从节点;

    • 将剩下的从节点,进行三轮考察:优先级、复制进度、ID 号。在每一轮考察过程中,如果找到了一个胜出的从节点,就将其作为新主节点。

  • 第二步:让已下线主节点属下的所有「从节点」修改复制目标,修改为复制「新主节点」;

  • 第三步:将新主节点的 IP 地址和信息,通过「发布者/订阅者机制」通知给客户端;

  • 第四步:继续监视旧主节点,当这个旧主节点重新上线时,将它设置为新主节点的从节点;

完!

分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题

  • 高并发写的问题

使用分片集群可以解决上述问题,如图:

image-20241123114012397

分片集群特征:

集群中有多个master,每个master保存不同数据

每个master都可以有多个slave节点

master之间通过ping监测彼此健康状态

客户端请求可以访问集群任意节点,最终都会被转发到正确节点

散列插槽 Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分

key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{gangya}num,则根据gangya计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到7003节点。

到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点 小结

Redis如何判断某个key应该在哪个实例?

将16384个插槽分配到不同的实例 根据key的有效部分计算哈希值,对16384取余 余数作为插槽,寻找插槽所在实例即可 如何将同一类数据固定的保存在同一个Redis实例?

这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

Redis 虚拟槽分区的特点:

解耦数据和节点之间的关系,简化了节点扩容和收缩难度。

节点自身维护槽的映射关系,不需要客户端 或 代理服务维护数据分片关系。

Redis Cluster的节点之间会共享消息,每个节点都知道另外节点负责管理的槽范围。每个节点只能对自己负责的槽进行维护 和 读写操作。

集群伸缩

Redis集群中的每个node(节点)负责分摊这16384个slot中的一部分,也就是说,每个slot都对应一个node负责处理。当动态添加或减少node节点时,只需要将16384个槽做个再分配,将槽中的键值和对应的数据迁移到对应的节点上。redis cluster提供了灵活的节点扩容和收缩方案。在不影响集群对外服务的情况下,可以为集群添加节点进行扩容,也可以下线部分节点进行缩容。可以说,槽是 Redis 集群管理数据的基本单位,集群伸缩就是槽和数据在节点之间的移动。

Redis分片集群(详解+图)_Guo_10_Jun的博客-CSDN博客

10.项目部分应用补充

10.1 补充:分页缓存

1.Zset维护分页缓存,按score排列,每次从那分页拿(但是删除和更新消耗很大,不推荐)

2.分页查询id列表,然后根据id列表到redis查询实体(更推荐

思考下用什么数据结构最合适?

这种情况维护缓存和数据库一致性可以用删除(更合理)

分页查询商品列表是典型的高并发吧? 写入倒是挺少的,

10.2 缓存一致性?

更新缓存代价小就更新缓存,大就删除缓存。

并发一致性的保证:1.旁路缓存+先更新再删除 (不能完全防止,是通过数据库和缓存的操作速度差异实现的)

2.分布式锁?

10.3缓存穿透问题

缓存穿透问题,在商品下单时也有用? image-20231002093533062 应该来说,在购物车批量下单无用(不需要直接查id,是根据用户拥有的已选中购物车下单),但直接下单接口的处理逻辑跟购物车批量下单一样,此外还需要加入缓存击穿的防范(缓存个null)

10.4 Redis+Lua

first

1.Lua脚本是什么?

Lua是一个高效(高并发、高性能)的轻量级脚本语言,广泛作为其他语言的嵌入脚本

2.为什么redis要引入lua

主要是为了高效的实现redis的批量原子操作;

1.减少网络开销,在Lua脚本中可以把多个命令放在同一个脚本中批量运行

2.原子操作,Redis会将整个脚本作为一个整体执行,中间不会被其他命令插入。换句话说,编写脚本的过程中无需担心会出现竞态条件。(redis原生命令不支持多条命令批量原子执行)

3.复用性,客户端发送的脚本会永远存储在Redis中,这意味着其他客户端可以复用这一脚本来完成同样的逻辑。

4.可自定义复杂逻辑,如if-else,高级运算符等。

PS:lua操作不能回滚,所以不带有原子性,但是我们可以对lua脚本全面测试,保证脚本操作不出错。

3.使用lua的问题

  • 当Lua脚本遇到异常时,已经执行过的逻辑是不会回滚的,所以必须对lua脚本全面测试保证脚本逻辑的健壮性。

  • 在脚本编写中声明的变量全部使用local关键字。

  • 在集群中使用Lua脚本要确保逻辑中所有的key分到相同机器,也就是同一个插槽(slot)中,可采用Redis Hash Tag技术。

  • 再次重申Lua脚本一定不要包含过于耗时、过于复杂的逻辑。

    (在执行EVAL命令时,直到命令执行完毕前,其他客户端发送的命令将会阻塞。因此LUA脚本不宜编写一些过于复杂了逻辑,必须尽量保证Lua脚本的效率,否则会使其它客户端请求超时。)

4.lua的语法

1.数据类型
  1. nil

  2. boolean 布尔值

  3. number 数字

  4. string 字符串

  5. table

2.声明类型

声明类型非常简单,不用携带类型。

--- 全局变量 name = 'felord.cn' --- 局部变量 local age = 18

Redis脚本在实践中不要使用全局变量,局部变量效率更高

前面四种非常好理解,第五种table需要简单说一下,它既是数组又类似Java中的HashMap(字典),它是Lua中仅有的数据结构。

image-20231003165027889

相当于一个集合,里面有一个数组,一个hashmap,你可以往里面存值,也可以放键值,这俩者不互相干扰,比如作为字典的图二,print arr【1】时返回的是nil 空值,也就是说,插入的键值不影响数组的索引,以数组索引形式取值也拿不到他

3.判断

image-20231003165247613

if then elseif then else end

4.循环

image-20231003165414312

ipair只遍历其中的数组,pairs还会遍历键值

ipairs中,i是数组索引,v是数组元素值

5.如何应用?

1.redis eval语法

Redis Eval 命令使用 Lua 解释器执行脚本。

语法

redis Eval 命令基本语法如下:

redis 127.0.0.1:6379> EVAL script numkeys key [key ...] arg [arg ...] 

参数说明:

  • script: 参数是一段 Lua 5.1 脚本程序。脚本不必(也不应该)定义为一个 Lua 函数。

  • numkeys: 用于指定键名参数的个数。

  • key [key ...]: 从 EVAL 的第三个参数开始算起,表示在脚本中所用到的那些 Redis 键(key),这些键名参数可以在 Lua 中通过全局变量 KEYS 数组,用 1 为基址的形式访问( KEYS[1] , KEYS[2] ,以此类推)。

  • arg [arg ...]: 附加参数,在 Lua 中通过全局变量 ARGV 数组访问,访问的形式和 KEYS 变量类似( ARGV[1] 、 ARGV[2] ,诸如此类)。

实例分析

image-20231003163720892

如图,2是numkeys,key1,key2都是key数组里的,first,second是arg数组里的

也可以直接通过 redis-cli --eval执行写好的lua脚本:

redis-cli --eval /test.lua 0

2.redis eval应用

通过return 返回结果,通过redis.call执行redis命令:

eval "return redis.call('keys','*')" 0

以下命令删除dict*格式的所有key值

local redisKeys = redis.call('keys',KEYS[1]..'*'); for i,k in pairs(redisKeys) do redis.call('del',k); end; return redisKeys;

一把可重入的分布式锁,且支持设定锁时间。

-- 加锁脚本
-- key1:要加锁的名称 argv1:锁存活的时间ms argv2:当前线程或主机的地址
local expire_time = tonumber(ARGV[1])
if redis.call('exists', KEYS[1]) == 0 then
    -- 锁不存在,创建一把锁,存入hash类型的值
    redis.call('set', KEYS[1], 1)
    -- 设置锁的存活时间,防止死锁
    redis.call('pexpire', KEYS[1], expire_time)
    return 1
end
​
if redis.call('hexists', KEYS[1], ARGV[2]) == 1 then
    -- 表示是同一线程重入
    redis.call('hincrby', KEYS[1], ARGV[2], 1)
    -- 重新设置锁的过期时间
    redis.call('pexpire', KEYS[1], expire_time)
    return 1
end
​
-- 没抢到锁,返回锁的剩余有效时间ms
return redis.call('pttl', KEYS[1])
​

ps:HSET KEY_NAME FIELD VALUE

-- 解锁脚本
-- 判断是当前线程持有锁,避免解了其他线程加的锁
if redis.call('hexists',KEYS[1],ARGV[2]) == 1 then
    -- 重入次数大于1,扣减次数
    if tonumber(redis.call('hget',KEYS[1],ARGV[2])) > 1 then
        return redis.call('hincrby', KEYS[1], ARGV[2], -1);
        -- 重入次数等于1,删除该锁
    else
        return redis.call('del', KEYS[1]);
    end
    -- 判断不是当前线程持有锁,返回解锁失败
else
    return 0;
end
​

Redis分布式锁-这一篇全了解(Redission实现分布式锁完美方案)-CSDN博客

3.java整合redis+lua

Redis 使用lua脚本最全教程redis lua语法衡与墨的博客-CSDN博客

redisTemplate 执行脚本方法

​
@Component
public class RedisUtil {
    @Resource
    private RedisTemplate<String, Object> redisTemplate;
​
    /**
     * 执行 lua 脚本
     * @author hengyumo
     * @since 2021-06-05
     *
     * @param luaScript  lua 脚本
     * @param returnType 返回的结构类型
     * @param keys       KEYS
     * @param argv       ARGV
     * @param <T>        泛型
     *           
     * @return 执行的结果
     */
    public <T> T executeLuaScript(String luaScript, Class<T> returnType, String[] keys, String... argv) {
        return redisTemplate.execute(RedisScript.of(luaScript, returnType),
                new StringRedisSerializer(),
                new GenericToStringSerializer<>(returnType),
                Arrays.asList(keys),
                (Object[])argv);
    }
}
​

使用很简单,以下用上边使用过的两个脚本作为示例:

​
    @Resource
    private RedisUtil redisUtil;
​
    @Test
    @SuppressWarnings("unchecked")
    public void testExecuteLuaScript() {
        String script = "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}";
        List<Object> list = (List<Object>)redisUtil.executeLuaScript(script,
                List.class, new String[] {"a", "b"}, "a", "b");
        list.forEach(x -> System.out.println(x.toString()));
​
        script = "for i=1,KEYS[1],1 do local k=KEYS[2]..i; redis.call('set',k,ARGV[1]);" +
                "if ARGV[2] then redis.call('expire',k,ARGV[2]) end;end;" +
                "return redis.call('keys',KEYS[2]..'*');";
        list = (List<Object>)redisUtil.executeLuaScript(script,
                List.class, new String[] {"10", "test"}, "0", "60");
        list.forEach(x -> System.out.println(x.toString()));
​
    }
​

image-20231003174227720

Redis 如何实现库存扣减操作和防止被超卖? - 掘金 (juejin.cn)

image-20231003174429579

分析:先查看对应key是否已存在,

if返回1说明已存在,取到库存值,并开始判断

if 为-1,则返回-1,结束

if 库存大于要扣除的库存数num,则incrby自增-num,返回incr后的库存数量,结束

if 前两个if都没有捕捉到,说明stock<num,返回-2,结束

如果上面三个if都没接到,那外层if结束,end,继续执行下面逻辑

else上面那个没接到,说明key目前不存在,说明对应商品的库存在缓存预热时没有加进去,返回-3,结束

好处:能够保证查询库存和扣减库存操作的原子性,保证不会多扣除redis库存

思考:多同时要扣减多个商品的库存, 如何保证原子性

10.5 redis最佳实践

key设计

image-20231013171156514

image-20231013171211671

redis BigKey

Redis 大 key 要如何处理?_牛客网 (nowcoder.com)

以下是对各个数据类型大key的描述:

  • value是STRING类型,它的值超过5MB

  • value是ZSET、Hash、List、Set等集合类型时,它的成员数量超过1w个

怎么处理:

  1. 当vaule是string时,可以使用序列化、压缩算法将key的大小控制在合理范围内,但是序列化和反序列化都会带来更多时间上的消耗。或者将key进行拆分,一个大key分为不同的部分,记录每个部分的key,使用multiget等操作实现事务读取。

  2. 当value是list/set等集合类型时,根据预估的数据规模来进行分片,不同的元素计算后分到不同的片。

  3. 异步删除大key,unlink

怎么找到大key呢?

  1. 通过 redis-cli --bigkeys 命令查找大key:最好在从节点或者业务低峰阶段进行扫描查询,以免影响实例正常运行该方法也存在不足,只能返回每种类型中最大的那个Key,且对于集合类型来说只统计集合元素个数多少而非实际占用的内存。

  2. 使用RdbTools工具查找大keyRdbTools第三方开源工具可以用来解析Redis的RDB文件,找到其中的大key。比如下面这条命令,将大于10Kb的Key输出到一个表格文件

rdb dump.rdb -c memory --bytes 10240 -f redis.csv

服务端优化

Redis 性能优化的 13 条军规!史上最全 - 知乎 (zhihu.com)

等到时候再云吧,现在就说目前我们项目的甲方提供服务器和相关中间件,我们只需要把进程部署进去就行,所以redis只在自己服务器做过配置,没调过优

项目优化之Redis调优redis参数调优一只Black的博客-CSDN博客

image-20231013190047877

线上Redis高并发性能调优实践 - 知乎 (zhihu.com)

缓存降级

当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。

缓存降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。

在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:

  1. 一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;

  2. 警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;

  3. 错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;

  4. 严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。

服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。

补充

SWAP

Redis常见阻塞原因总结 | JavaGuide(Java面试 + 学习指南)

内存碎片

Redis内存碎片详解 | JavaGuide(Java面试 + 学习指南)

11.Redission

redisson使用全解——redisson官方文档+注释(上篇)_redisson官网中文-CSDN博客

目录 · redisson/redisson Wiki · GitHub

redisson简单介绍-CSDN博客

Redisson 实现分布式锁原理分析 - 知乎 (zhihu.com)

这里暂时只了解分布式锁,对于它更深层次的理解得先学完redis

1.what?

Redisson是更适用于分布式开发的redis客户端,基于Redis、Lua和Netty建立起了成熟的分布式解决方案,提供了如分布式分布式数据结构,分布式锁等更高级的应用方案

Redisson采用了基于NIO的Netty框架,不仅能作为Redis底层驱动客户端,具备提供对Redis各种组态形式的连接功能,对Redis命令能以同步发送、异步形式发送、异步流形式发送或管道形式发送的功能,LUA脚本执行处理,以及处理返回结果的功能,还在此基础上融入了更高级的应用方案,不但将原生的Redis Hash,List,Set,String,Geo,HyperLogLog等数据结构封装为Java里的映射(Map),列表(List),集(Set),通用对象桶(Object Bucket),地理空间对象桶(Geospatial Bucket),基数估计算法(HyperLogLog)等结构,在这基础上还提供了分布式的多值映射(Multimap),本地缓存映射(LocalCachedMap),有序集(SortedSet),计分排序集(ScoredSortedSet),字典排序集(LexSortedSet),列队(Queue),阻塞队列(Blocking Queue),有界阻塞列队(Bounded Blocking Queue),双端队列(Deque),阻塞双端列队(Blocking Deque),阻塞公平列队(Blocking Fair Queue),延迟列队(Delayed Queue),布隆过滤器(Bloom Filter),原子整长形(AtomicLong),原子双精度浮点数(AtomicDouble),BitSet等Redis原本没有的分布式数据结构。不仅如此,Redisson还实现了Redis文档中提到像分布式锁Lock这样的更高阶应用场景。事实上Redisson并没有不止步于此,在分布式锁的基础上还提供了联锁(MultiLock),读写锁(ReadWriteLock),公平锁(Fair Lock),红锁(RedLock),信号量(Semaphore),可过期性信号量(PermitExpirableSemaphore)和闭锁(CountDownLatch)这些实际当中对多线程高并发应用至关重要的基本部件。正是通过实现基于Redis的高阶应用方案,使Redisson成为构建分布式系统的重要工具

在提供这些工具的过程当中,Redisson广泛的使用了承载于Redis订阅发布功能之上的分布式话题(Topic)功能。使得即便是在复杂的分布式环境下,Redisson的各个实例仍然具有能够保持相互沟通的能力。在以这为前提下,结合了自身独有的功能完善的分布式工具,Redisson进而提供了像分布式远程服务(Remote Service),分布式执行服务(Executor Service)和分布式调度任务服务(Scheduler Service)这样适用于不同场景的分布式服务。使得Redisson成为了一个基于Redis的Java中间件(Middleware)。

Redisson提供了使用Redis的最简单和最便捷的方法。Redisson的宗旨是促进使用者对Redis的关注分离(Separation of Concern),从而让使用者能够将精力更集中地放在处理业务逻辑上

在此不难看出,Redisson同其他Redis Java客户端有着很大的区别,相比之下其他客户端提供的功能还仅仅停留在作为数据库驱动层面上,比如仅针对Redis提供连接方式,发送命令和处理返回结果等。像上面这些高层次的应用则只能依靠使用者自行实现。

Redission,Jedis,Lettuce区别

Redisson是更高层的抽象,Jedis和Lettuce是Redis命令的封装。

Lettuce当多线程使用同一连接实例时,是线程安全的。而jedis不安全,所以要使用连接池,为每个jedis实例分配一个连接。

Redisson基于Redis、Lua和Netty建立起了成熟的分布式解决方案

2.redission分布式锁

1.为什么用redission

为什么要用分布式锁?

在有些场景中,为了保证数据不重复,要求保证某一方法同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,只需要保证单进程多线程环境中的线程安全性,通过 JAVA 提供的 volatile、ReentrantLock、synchronized 以及 concurrent 并发包下一些线程安全的类等就可以做到。而在多机部署环境中,不同机器不同进程,就需要在多进程下保证线程的安全性了。因此,分布式锁应运而生。

首先要明确分布式锁需要满足的特性:

  1. 互斥性。在任意时刻,只有一个客户端能持有锁。(redis通过单线程实现)

  2. 不死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。(要有超时时间)

  3. 解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了,即不能误解锁

  4. 锁续期,防止代码还没执行完锁就过期了

根据以上原则,我们来选择分布式锁的实现方案:

image-20231004124317604

PS:redis+lua是可以实现锁重入和阻塞等待的。不过锁续期实现起来很复杂,而redission给我们封装好了功能完备的分布式锁实现,借助 Redisson 的 WatchDog 机制 能够很好的解决锁续期的问题

2.redission分布式锁的实现

2.1 应用代码

image-20231004124609685

如图,操作很简便,首先构造config,然后构造redissionclient,然后用redissionclient获取所需要的对象实例进行操作就行。

2.2 原理

概述:redission定义了加锁,解锁两个接口,通过lua脚本保证原子性,同时加锁解锁中用到了redis的发布订阅功能

加锁&解锁Lua脚本

1、加锁Lua脚本

-- 若锁不存在:则新增锁,并设置锁重入计数为1、设置锁过期时间
if (redis.call('exists', KEYS[1]) == 0) then
    redis.call('hset', KEYS[1], ARGV[2], 1);
    redis.call('pexpire', KEYS[1], ARGV[1]);
    return nil;
end;
 
-- 若锁存在,且唯一标识也匹配:则表明当前加锁请求为锁重入请求,故锁重入计数+1,并再次设置锁过期时间
if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then
    redis.call('hincrby', KEYS[1], ARGV[2], 1);
    redis.call('pexpire', KEYS[1], ARGV[1]);
    return nil;
end;
 
-- 若锁存在,但唯一标识不匹配:表明锁是被其他线程占用,当前线程无权获取他人占用的锁,直接返回锁剩余过期时间
return redis.call('pttl', KEYS[1]);

image-20231004154225664

image-20241123114616227

Q:返回nil、返回剩余过期时间有什么目的? A:当且仅当返回nil,才表示加锁成功;客户端需要感知加锁是否成功的结果

2.解锁lua脚本

-- 若锁不存在:则直接广播解锁消息,并返回1
if (redis.call('exists', KEYS[1]) == 0) then
    redis.call('publish', KEYS[2], ARGV[1]);
    return 1; 
end;
 
-- 若锁存在,但唯一标识不匹配:则表明锁被其他线程占用,当前线程不允许解锁其他线程持有的锁
if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then
    return nil;
end; 
 
-- 若锁存在,且唯一标识匹配:则先将锁重入计数减1
local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); 
if (counter > 0) then 
    -- 锁重入计数减1后还大于0:表明当前线程持有的锁还有重入,不能进行锁删除操作,但可以友好地帮忙设置下过期时期
    redis.call('pexpire', KEYS[1], ARGV[2]); 
    return 0; 
else 
    -- 锁重入计数已为0:间接表明锁已释放了。直接删除掉锁,并广播解锁消息,去唤醒那些争抢过锁但还处于阻塞中的线程
    redis.call('del', KEYS[1]); 
    redis.call('publish', KEYS[2], ARGV[1]); 
    return 1;
end;
 
return nil;

image-20231004165140393

img

Q1:广播解锁消息有什么用? A:是为了通知其他争抢锁阻塞住的线程,从阻塞中解除,并再次去争抢锁。

Q2:返回值0、1、nil有什么不一样? A:当且仅当返回1,才表示当前请求真正触发了解锁Lua脚本;

2.3 加锁源码分析‘

1.加锁源码

public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
        long time = unit.toMillis(waitTime);
        long current = System.currentTimeMillis();
        long threadId = Thread.currentThread().getId();
        // 1.尝试获取锁
        Long ttl = tryAcquire(leaseTime, unit, threadId);
        // lock acquired
        if (ttl == null) {
            return true;
        }

        // 申请锁的耗时如果大于等于最大等待时间,则申请锁失败.
        time -= System.currentTimeMillis() - current;
        if (time <= 0) {
            acquireFailed(threadId);
            return false;
        }

        current = System.currentTimeMillis();

        /**
         * 2.订阅锁释放事件,并通过 await 方法阻塞等待锁释放,有效的解决了无效的锁申请浪费资源的问题:
         * 基于信息量,当锁被其它资源占用时,当前线程通过 Redis 的 channel 订阅锁的释放事件,一旦锁释放会发消息通知待等待的线程进行竞争.
         *
         * 当 this.await 返回 false,说明等待时间已经超出获取锁最大等待时间,取消订阅并返回获取锁失败.
         * 当 this.await 返回 true,进入循环尝试获取锁.
         */
        RFuture<RedissonLockEntry> subscribeFuture = subscribe(threadId);
        // await 方法内部是用 CountDownLatch 来实现阻塞,获取 subscribe 异步执行的结果(应用了 Netty 的 Future)
        if (!subscribeFuture.await(time, TimeUnit.MILLISECONDS)) {
            if (!subscribeFuture.cancel(false)) {
                subscribeFuture.onComplete((res, e) -> {
                    if (e == null) {
                        unsubscribe(subscribeFuture, threadId);
                    }
                });
            }
            acquireFailed(threadId);
            return false;
        }

        try {
            // 计算获取锁的总耗时,如果大于等于最大等待时间,则获取锁失败.
            time -= System.currentTimeMillis() - current;
            if (time <= 0) {
                acquireFailed(threadId);
                return false;

              }

            /**
             * 3.收到锁释放的信号后,在最大等待时间之内,循环一次接着一次的尝试获取锁
             * 获取锁成功,则立马返回 true,
             * 若在最大等待时间之内还没获取到锁,则认为获取锁失败,返回 false 结束循环
             */
            while (true) {
                long currentTime = System.currentTimeMillis();

                // 再次尝试获取锁
                ttl = tryAcquire(leaseTime, unit, threadId);
                // lock acquired
                if (ttl == null) {
                    return true;
                }
                // 超过最大等待时间则返回 false 结束循环,获取锁失败
                time -= System.currentTimeMillis() - currentTime;
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }

                /**
                 * 6.阻塞等待锁(通过信号量(共享锁)阻塞,等待解锁消息):
                 */
                currentTime = System.currentTimeMillis();
                if (ttl >= 0 && ttl < time) {
                    //如果剩余时间(ttl)小于wait time ,就在 ttl 时间内,从Entry的信号量获取一个许可(除非被中断或者一直没有可用的许可)。
                    getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                } else {
                    //则就在wait time 时间范围内等待可以通过信号量
                    getEntry(threadId).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);
                }

                // 更新剩余的等待时间(最大等待时间-已经消耗的阻塞时间)
                time -= System.currentTimeMillis() - currentTime;
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }
            }
        } finally {
            // 7.无论是否获得锁,都要取消订阅解锁消息
            unsubscribe(subscribeFuture, threadId);
        }
//        return get(tryLockAsync(waitTime, leaseTime, unit));
    }

流程分析:

  1. 尝试获取锁,返回 null 则说明加锁成功,返回一个数值,则说明已经存在该锁,ttl 为锁的剩余存活时间。

  2. 如果此时客户端 2 进程获取锁失败,那么使用客户端 2 的线程 id(其实本质上就是进程 id)通过 Redis 的 channel 订阅锁释放的事件,。如果等待的过程中一直未等到锁的释放事件通知,当超过最大等待时间则获取锁失败,返回 false,也就是第 39 行代码。如果等到了锁的释放事件的通知,则开始进入一个不断重试获取锁的循环。

  3. 循环中每次都先试着获取锁,并得到已存在的锁的剩余存活时间。如果在重试中拿到了锁,则直接返回。如果锁当前还是被占用的,那么等待释放锁的消息,具体实现使用了 JDK 的信号量 Semaphore 来阻塞线程,当锁释放并发布释放锁的消息后,信号量的 release() 方法会被调用,此时被信号量阻塞的等待队列中的一个线程就可以继续尝试获取锁了。

省流:先尝试获锁,如果获锁失败就订阅锁释放事件,当前线程通过countdownlatch阻塞等待,如果等到超时了就返回失败并且取消订阅,如果等到事件了,就进入循环开始竞争获锁,循环里每次先尝试获锁,如果没获取到就用信号量阻塞等待下一次锁释放,循环重试时如果超时了就返回失败。

特别注意:以上过程存在一个细节,这里有必要说明一下,也是分布式锁的一个关键点:当锁正在被占用时,等待获取锁的进程并不是通过一个 while(true) 死循环去获取锁,而是利用了 Redis 的发布订阅机制,通过 await 方法阻塞等待锁的进程,有效的解决了无效的锁申请浪费资源的问题

2.4 锁续期

Redisson 提供了一个续期机制, 只要客户端 1 一旦加锁成功,就会启动一个 Watch Dog。

这样的的话如果客户端宕机,锁可以超时不死锁。 客户端进程在运行时又可以做到锁续期

如下是加锁方法最终调用的方法

    private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) {
        if (leaseTime != -1L) {
            // 设定了固定有效期的
            return this.tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
        } else {
            // 没有设定有效期的,这里启动了一个守护线程对锁续期
            RFuture<Long> ttlRemainingFuture = this.tryLockInnerAsync(this.commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
            ttlRemainingFuture.addListener(new FutureListener<Long>() {
                public void operationComplete(Future<Long> future) throws Exception {
                    if (future.isSuccess()) {
                        Long ttlRemaining = (Long)future.getNow();
                        if (ttlRemaining == null) {
                            RedissonLock.this.scheduleExpirationRenewal(threadId);
                        }
                    }
                }
            });
            return ttlRemainingFuture;
        }
    }

注意:从以上源码我们看到 leaseTime 必须是 -1 才会开启 Watch Dog 机制,也就是如果你想开启 Watch Dog 机制必须使用默认的加锁时间为 30s。如果你自己自定义时间,超过这个时间,锁就会自定释放,并不会延长。

private void scheduleExpirationRenewal(final long threadId) {
    if (!expirationRenewalMap.containsKey(this.getEntryName())) {
        Timeout task = this.commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
            public void run(Timeout timeout) throws Exception {
                // 执行lua 进行续期
                RFuture<Boolean> future = RedissonLock.this.renewExpirationAsync(threadId);
                future.addListener(new FutureListener<Boolean>() {
                    public void operationComplete(Future<Boolean> future) throws Exception {
                        RedissonLock.expirationRenewalMap.remove(RedissonLock.this.getEntryName());
                        if (!future.isSuccess()) {
                            RedissonLock.log.error("Can't update lock " + RedissonLock.this.getName() + " expiration", future.cause());
                        } else {
                            if ((Boolean)future.getNow()) {
                                RedissonLock.this.scheduleExpirationRenewal(threadId);
                            }
                        }
                    }
                });
            }
            // 每隔internalLockLeaseTime/3 = 10秒检查一次
        }, this.internalLockLeaseTime / 3L, TimeUnit.MILLISECONDS);
        if (expirationRenewalMap.putIfAbsent(this.getEntryName(), new RedissonLock.ExpirationEntry(threadId, task)) != null) {
            task.cancel();
        }
    }
}

Watch Dog 机制其实就是一个后台定时任务线程,获取锁成功之后,会将持有锁的线程放入到一个 RedissonLock.EXPIRATION_RENEWAL_MAP里面,然后每隔 10 秒 (internalLockLeaseTime / 3) 检查一下,如果客户端 1 还持有锁 key(判断客户端是否还持有 key,其实就是遍历 EXPIRATION_RENEWAL_MAP 里面线程 id 然后根据线程 id 去 Redis 中查,如果存在就会延长 key 的时间),那么就会不断的延长锁 key 的生存时间。

image-20231004174818683

释放锁时会删除EXPIRATION_RENEWAL_MAP里面的对应线程数据(该jvm正在执行的其他锁也会往这个map里放线程,这个map应该是公用的?守护线程倒不是公用的,每一个需要续期的锁都会开一个守护线程)

PS:到这里看门狗的具体实现也就清楚了,无非是后台起一个定时任务的线程,每隔一定时间对该锁进行续命,延长锁的时间,很多人肯定好奇,那延长锁的次数是有限制的吗?难道无限进行续命吗,假设业务一直没执行完,难道锁一直不释放吗?起初我也有这样的疑问,但是想了想,实际业务中也不能发生这样的情况,除非是代码bug,或者陷入了死循环,这种情况直接抛异常然后finally unlock就行

2.5 释放锁源码分析
@Override
public RFuture<Void> unlockAsync(long threadId) {
    RPromise<Void> result = new RedissonPromise<Void>();
    // 1. 异步释放锁
    RFuture<Boolean> future = unlockInnerAsync(threadId);
    // 取消 Watch Dog 机制
    future.onComplete((opStatus, e) -> {
        cancelExpirationRenewal(threadId);

        if (e != null) {
            result.tryFailure(e);
            return;
        }

        if (opStatus == null) {
            IllegalMonitorStateException cause = new IllegalMonitorStateException("attempt to unlock lock, not locked by current thread by node id: "
                    + id + " thread-id: " + threadId);
            result.tryFailure(cause);
            return;
        }

        result.trySuccess(null);
    });

    return result;
}

protected RFuture<Boolean> unlockInnerAsync(long threadId) {
    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
            // 判断锁 key 是否存在
            "if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
                "return nil;" +
            "end; " +
            // 将该客户端对应的锁的 hash 结构的 value 值递减为 0 后再进行删除
            // 然后再向通道名为 redisson_lock__channel publish 一条 UNLOCK_MESSAGE 信息
            "local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
            "if (counter > 0) then " +
                "redis.call('pexpire', KEYS[1], ARGV[2]); " +
                "return 0; " +
            "else " +
                "redis.call('del', KEYS[1]); " +
                "redis.call('publish', KEYS[2], ARGV[1]); " +
                "return 1; "+
            "end; " +
            "return nil;",
            Arrays.<Object>asList(getName(), getChannelName()), LockPubSub.UNLOCK_MESSAGE, internalLockLeaseTime, getLockName(threadId));
}

从以上代码来看,释放锁的步骤主要分三步:

  1. 删除锁(这里注意可重入锁,在上面的脚本中有详细分析)。

  2. 广播释放锁的消息,通知阻塞等待的进程(向通道名为 redisson_lock__channel publish 一条 UNLOCK_MESSAGE 信息)。

  3. 取消 Watch Dog 机制,即将 RedissonLock.EXPIRATION_RENEWAL_MAP 里面的线程 id 删除,并且 cancel 掉 Netty 的那个定时任务线程

12步在lua脚本完成,第三步在jvm中完成

3.优缺点

1.优点

1.通过watchDog解决了锁续期问题

2.封装了的分布式可重入锁的实现,满足了分布式锁需要满足的四个特性。

3.在阻塞等待申请锁资源的实现做了优化,利用redis的发布订阅机制,减少了无效的锁申请,提升了资源利用率

2.缺点

RedissonLock 同样没有解决 节点挂掉的时候,存在丢失锁的风险的问题。而现实情况是有一些场景无法容忍的,所以 Redisson 提供了实现了redlock算法的 RedissonRedLock,RedissonRedLock 真正解决了单点失败的问题,代价是需要额外的为 RedissonRedLock 搭建Redis环境。

所以,如果业务场景可以容忍这种小概率的错误,则推荐使用 RedissonLock, 如果无法容忍,则推荐使用 RedissonRedLock。

12.Pipeline

「进击Redis」十一、Redis Pipeline这一篇就够了 - 掘金 (juejin.cn)

数据刷新到redis,使用管道批量刷新,减少连接获取,资源关闭的开销。 同时因为redis服务是单线程的,需要控制管道的命令量不要过分多,因为管道命令过多执行可能会导致redis线程阻塞,导致其他线程操作redis超时。所以需要控制管道的命令量,并且适当扩大redis的超时时间. 可以改为60s或者100秒应该足够了

为什么使用pipeline?

image-20230923201248553

redis是一个高性能的单线程的key-value数据库。它的执行过程为:

(1)发送命令-〉(2)命令排队-〉(3)命令执行-〉(4)返回结果

Redis也支持Pipeline模式,不同于Ping-pong模式,Pipeline模式类似流水线的工作模式:客户端发送一个命令后无需等待执行结果,会继续发送其他命令;在全部请求发送完毕后,客户端关闭请求,开始接收响应,收到执行结果后再与之前发送的命令按顺序进行一一匹配。在Pipeline模式的具体实现中,大部分Redis客户端采用批处理的方式,即一次发送多个命令,在接收完所有命令执行结果后再返回给上层业务。

如果我们使用redis进行批量插入数据,正常情况下相当于将以上四个步骤批量执行N次。(1)和(4)称为Round Trip Time(RTT,往返时间)。因此我们需要批量操作,把原本需要执行N次的RTT(网络请求与响应时间)变成一次,这样就减少了网络IO的消耗,提高了性能

虽然 Redis 已经提供了像 mgetmset 这种批量的命令,但是有些操作如果redis不支持批量的操作,一条一条的执行命令,这时候就需要pipeline,pipeline为redis提供了一系列批量操作的功能。

它能将一组 Redis 命令进行组装,通过一次传输给 Redis 并返回结果集

image-20230922104323811

how?

redis-cli--pipe参数实际上就是使用 Pipeline 机制

或者使用客户端(比如jedis)操作管道

image-20230922104548194

SpringBoot整合RedisTemplate利用pipeline进行高效率批量操作_Jeremy_Lee123的博客-CSDN博客

原理

实现Pipeline 功能,需要客户端和服务器端的支持。

客户端new 一个管道对象,每次向管道里放命令,积累到最后一起传给redis服务端,redis服务端与客户端维持一个TCP链接,单线程依次执行命令,同时把每条命令的处理结果缓存到Socket接收缓冲区,最后所有命令都处理完一起打包返回。 (ps:所以不要批量操作太多数据,一是阻塞redis线程,容易使其他线程操作redis超时,二是数据太多存储处理结果时会冲爆缓冲区)

pipeline只是在一个TCP链接里批量发命令而已,并没有保证原子性

因为:

  1. 这是纯客户端行为,服务端无感知,也没有进行对应的特殊处理。

  2. 不阻塞服务端执行其他客户端的指令,即没有串行化

批量命令、Pipeline 对比

  1. 原生批量命令是原子的,Pipeline 是非原子的。

  2. 原生批量命令是一个命令对应多个 key,Pipeline 支持多个命令。

  3. 原生批量命令是 Redis 服务端支持实现的,而 Pipeline 是客户端实现

使用场景

Peline是 Redis 的一个提高吞吐量的机制,适用于多 key 读写场景,比如同时读取多个keyvalue,或者更新多个keyvalue,并且允许一定比例的写入失败实时性也没那么高,那么这种场景就可以使用了。比如 10000 条一下进入 redis,可能失败了 2 条无所谓,后期有补偿机制就行了,像短信群发这种场景,这时候用 pipeline 最好了。

(提前把热key放进去就行。其他并发不高的商品,缓存查不到就现场会写)

注意问题

  1. Pipeline是非原子的,会出现原子性问题。

  2. Pipeline中包含的命令不要包含过多。

  3. Pipeline每次只能作用在一个 Redis 节点上。

  4. Pipeline 不支持事务,因为命令是一条一条执行的。

13.事务

Redis Pipeline &事务&Lua脚本的区别 - 知乎 (zhihu.com)

image-20231013183547695

Redis事务的概念:

Redis 事务的本质是一组命令的集合。事务支持一次执行多个命令,一个事务中所有命令都会被序列化。在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会插入到事务执行命令序列中。

总结说:redis事务就是一次性、顺序性、排他性的执行一个队列中的一系列命令

Redis事务支持隔离性

Redis 是单进程程序,并且它保证在执行事务时,不会对事务进行中断,事务可以运行直到执行完所有事务队列中的命令为止。因此,Redis 的事务是总是带有隔离性的。

Redis不保证原子性

Redis中,单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。


根据原子性的定义:一个事务内,多个操作要么全部执行成功,要么全部不执行。那么 Pipeline、事务、Lua 都不具备原子性,因为单条指令的失败都不会阻碍其他执行的实际执行, 并没有"回滚"概念。

Redis事务的三个阶段:

(1)开始事务

(2)命令入队

(3)执行事务

image-20241123113921097

多个命令会被人队到事务队列中, 然后按先进先出(FIFO)的顺序执行。

WATCH命令

WATCH命令可以监控一个或多个键,一旦其中有一个键被修改,之后的事务就不会执行(类似于乐观锁)。执行EXEC命令之后,就会自动取消监控。

14.Redis database

16个数据库的由来

  • Redis是一个字典结构的存储服务器,一个Redis实例提供了多个用来存储数据的字典,客户端可以指定将数据存储在哪个字典中,这与在一个关系数据库实例中可以创建多个数据库类似,所以可以将其中的每个字典都理解成一个独立的数据库。

  • 可以通过调整Redis的配置文件redis/redis.conf中的databases来修改这一个值,设置完毕后重启Redis便完成配置。

  • 客户端与Redis建立连接后会默认选择0号数据库,不过可以随时使用SELECT命令更换数据库。

Redis实例默认建立了16个db,由于不支持自主进行数据库命名所以以dbX的方式命名。默认数据库数量可以修改配置文件的database值来设定。对于db正确的理解应为“命名空间”,多个应用程序不应使用同一个Redis不同库,而应一个应用程序对应一个Redis实例,不同的数据库可用于存储不同环境的数据。最后要注意,Redis集群下只有db0,不支持多db。